108 research outputs found

    Long-term tidal evolution of the TRAPPIST-1 system

    Get PDF
    The ultracool M-dwarf star TRAPPIST-1 is surrounded by seven planets configured in a resonant chain. Transit-timing variations have shown that the planets are caught in multiple three-body resonances and that their orbits are slightly eccentric, probably caused by resonant forcing. The current values of the eccentricities could be a remnant from their formation. Here we run numerical simulations using fictitious forces of trapping the fully-grown planets in resonances as they migrated in the gas disc, followed by numerical simulations detailing their tidal evolution. For a reduced disc scale height h∼0.03h\sim 0.03--0.05, the eccentricities of the planets upon capture in resonance are higher than their current values by factors of a few. We show that the current eccentricities and spacing of planets d to h are natural outcomes of coupled tidal evolution wherein the planets simultaneously damp their eccentricities and separate due to their resonant interaction. We further show that the planets evolve along a set of equilibrium curves in semimajor axis--eccentricity phase space that are defined by the resonances, and that conserve angular momentum. As such, the current 8:5--5:3--(3:2)2^2--4:3--3:2 resonant configuration cannot be reproduced from a primordial (3:2)4^4--4:3--3:2 resonant configuration from tidal dissipation in the planets alone. We use our simulations to constrain the long-term tidal parameters k2/Qk_2/Q for planets b to e, which are in the range 10−310^{-3} to 10−210^{-2}, and show that these are mostly consistent with those obtained from interior modelling following reasonable assumptions.Comment: Accepted in Monthly Notices of the Royal Astronomical Societ

    Speeding up the GENGA N-body integrator on consumer-grade graphics cards

    Get PDF
    Context. Graphics processing unit (GPU) computing has become popular due to the enormous calculation potential that can be harvested from a single card. The N-body integrator Gravitational ENcounters with GPU Acceleration (GENGA) is built to harvest the computing power from such cards, but it suffers a severe performance penalty on consumer-grade Nvidia GPUs due to their artificially truncated double precision performance. Aims. We aim to speed up GENGA on consumer-grade cards by harvesting their high single-precision performance. Methods. We modified GENGA to have the option to compute the mutual long-distance forces between bodies in single precision and tested this with five experiments. First, we ran a high number of simulations with similar initial conditions of on average 6600 fully self-gravitating planetesimals in both single and double precision to establish whether the outcomes were statistically different. These simulations were run on Tesla K20 cards. We supplemented this test with simulations that (i) began with a mixture of planetesimals and planetary embryos, (ii) planetesimal-driven giant planet migration, and (iii) terrestrial planet formation with a dissipating gas disc. All of these simulations served to determine the accuracy of energy and angular momentum conservation under various scenarios with single and double precision forces. Second, we ran the same simulation beginning with 40 000 self-gravitating planetesimals using both single and double precision forces on a variety of consumer-grade and Tesla GPUs to measure the performance boost of computing the long-range forces in single precision. Results. We find that there are no statistical differences when simulations are run with the gravitational forces in single or double precision that can be attributed to the force prescription rather than stochastic effects. The accumulations in uncertainty in energy are almost identical when running with single or double precision long-range forces. However, the uncertainty in the angular momentum using single rather than double precision long-range forces is about two orders of magnitude greater, but still very low. Running the simulations in single precision on consumer-grade cards decreases running time by a factor of three and becomes within a factor of three of a Tesla A100 GPU. Additional tuning speeds up the simulation by a factor of two across all types of cards. Conclusions. The option to compute the long-range forces in single precision in GENGA when using consumer-grade GPUs dramatically improves performance at a little penalty to accuracy. There is an additional environmental benefit because it reduces energy usage

    GENGA. II. GPU Planetary N-body Simulations with Non-Newtonian Forces and High Number of Particles

    Full text link
    We present recent updates and improvements of the graphical processing unit (GPU) N-body code GENGA. Modern state-of-the-art simulations of planet formation require the use of a very high number of particles to accurately resolve planetary growth and to quantify the effect of dynamical friction. At present the practical upper limit is in the range of 30,000–60,000 fully interactive particles; possibly a little more on the latest GPU devices. While the original hybrid symplectic integration method has difficulties to scale up to these numbers, we have improved the integration method by (i) introducing higher level changeover functions and (ii) code improvements to better use the most recent GPU hardware efficiently for such large simulations. We added treatments of non-Newtonian forces such as general relativity, tidal interaction, rotational deformation, the Yarkovsky effect, and Poynting–Robertson drag, as well as a new model to treat virtual collisions of small bodies in the solar system. We added new tools to GENGA, such as semi-active test particles that feel more massive bodies but not each other, a more accurate collision handling and a real-time openGL visualization. We present example simulations, including a 1.5 billion year terrestrial planet formation simulation that initially started with 65,536 particles, a 3.5 billion year simulation without gas giants starting with 32,768 particles, the evolution of asteroid fragments in the solar system, and the planetesimal accretion of a growing Jupiter simulation. GENGA runs on modern NVIDIA and AMD GPUs

    A Randomized Controlled Trial Study of a Multimodal Intervention vs. Cognitive Training to Foster Cognitive and Affective Health in Older Adults.

    Get PDF
    Research over the past few decades has shown the positive influence that cognitive, social, and physical activities have on older adults' cognitive and affective health. Especially interventions in health-related behaviors, such as cognitive activation, physical activity, social activity, nutrition, mindfulness, and creativity, have shown to be particularly beneficial. Whereas most intervention studies apply unimodal interventions, such as cognitive training (CT), this study investigates the potential to foster cognitive and affective health factors of older adults by means of an autonomy-supportive multimodal intervention (MMI). The intervention integrates everyday life recommendations for six evidence-based areas combined with psychoeducational information. This randomized controlled trial study compares the effects of a MMI and CT on those of a waiting control group (WCG) on cognitive and affective factors, everyday life memory performance, and activity in everyday life. Three groups, including a total of 119 adults aged 65-86 years, attended a 5- or 10-week intervention. Specifically, one group completed a 10-week MMI, the second group completed 5-week of computer-based CT followed by a 5-week MMI, whereas the third group paused before completing the MMI for the last 5 weeks. All participants completed online surveys and cognitive tests at three test points. The findings showed an increase in the number and variability of activities in the everyday lives of all participants. Post hoc analysis on cognitive performance of MMI to CT indicate similar (classic memory and attention) or better (working memory) effects. Furthermore, results on far transfer variables showed interesting trends in favor of the MMI, such as increased well-being and attitude toward the aging brain. Also, the MMI group showed the biggest perceived improvements out of all groups for all self-reported personal variables (memory in everyday life and stress). The results implicate a positive trend toward MMI on cognitive and affective factors of older adults. These tendencies show the potential of a multimodal approach compared to training a specific cognitive function. Moreover, the findings suggest that information about MMI motivates participants to increase activity variability and frequency in everyday life. Finally, the results could also have implications for the primary prevention of neurocognitive deficits and degenerative diseases

    Easily retrievable objects among the NEO population

    Get PDF
    Asteroids and comets are of strategic importance for science in an effort to understand the formation, evolution and composition of the Solar System. Near-Earth Objects (NEOs) are of particular interest because of their accessibility from Earth, but also because of their speculated wealth of material resources. The exploitation of these resources has long been discussed as a means to lower the cost of future space endeavours. In this paper, we consider the currently known NEO population and define a family of so-called Easily Retrievable Objects (EROs), objects that can be transported from accessible heliocentric orbits into the Earth’s neighbourhood at affordable costs. The asteroid retrieval transfers are sought from the continuum of low energy transfers enabled by the dynamics of invariant manifolds; specifically, the retrieval transfers target planar, vertical Lyapunov and halo orbit families associated with the collinear equilibrium points of the Sun-Earth Circular Restricted Three Body problem. The judicious use of these dynamical features provides the best opportunity to find extremely low energy Earth transfers for asteroid material. A catalogue of asteroid retrieval candidates is then presented. Despite the highly incomplete census of very small asteroids, the ERO catalogue can already be populated with 12 different objects retrievable with less than 500 m/s of Δv. Moreover, the approach proposed represents a robust search and ranking methodology for future retrieval candidates that can be automatically applied to the growing survey of NEOs

    You do what in your microprobe?! The EPMA as a multimode platform for nitride semiconductor characterization

    Get PDF
    While the use of electron probe microanalysis (EPMA) is widespread in the geological and metallurgical sciences, it remains less prevalent in the field of semiconductor research. For these materials, trace element (i.e. dopant) levels typically lie near or beneath the detection limit of wavelength-dispersive Xray (WDX) spectrometers, while alloy compositions of ternary mixtures and multilayer structures can more readily be determined using X-ray diffraction techniques. The electron beam measurements more commonly applied to semiconductors remain transmission electron microscopy (for structural characterization), and scanning electron microscopy (topographic, optical and electrical information). Despite this, there are many aspects of the EPMA that make it an attractive platform for all of thesetypes of semiconductor characterization, particularly when combining compositional information fromWDX with complementary and simultaneously-acquired signals. These advantages include: built-inlight optics; a stable, quantified and high-current beam; and a combined large-area and high-resolutionmapping capability. This allows the measurement of cathodoluminescence (CL), electron beam-inducedcurrent (EBIC) and electron channelling contrast imaging (ECCI) signals alongside WDX, which weapply to the investigation of visible and UV AlxInyGa1-x-yN materials, devices and nanostructures

    Discovery and Selection of Hepatitis B Virus-Derived T Cell Epitopes for Global Immunotherapy Based on Viral Indispensability, Conservation, and HLA-Binding Strength

    Get PDF
    Immunotherapy represents an attractive option for the treatment of chronic hepatitis B virus (HBV) infection. The HBV proteins polymerase (Pol) and HBx are of special interest for antigen-specific immunotherapy because they are essential for viral replication and have been associated with viral control (Pol) or are still expressed upon viral DNA integration (HBx). Here, we scored all currently described HBx- and Pol-derived epitope sequences for viral indispensability and conservation across all HBV genotypes. This yielded 7 HBx-derived and 26 Po

    Herschel measurements of the D/H and 16O/18O ratios in water in the Oort-cloud comet C/2009 P1 (Garradd)

    Get PDF
    The D/H ratio in cometary water is believed to be an important indicator of the conditions under which icy planetesimals formed and can provide clues to the contribution of comets to the delivery of water and other volatiles to Earth. Available measurements suggest that there is isotopic diversity in the comet population. The Herschel Space Observatory revealed an ocean-like ratio in the Jupiter-family comet 103P/Hartley 2, whereas most values measured in Oort-cloud comets are twice as high as the ocean D/H ratio. We present here a new measurement of the D/H ratio in the water of an Oort-cloud comet. HDO, H_2O, and H_2^18O lines were observed with high signal-to-noise ratio in comet C/2009 P1 (Garradd) using the Herschel HIFI instrument. Spectral maps of two water lines were obtained to constrain the water excitation. The D/H ratio derived from the measured H_2^16O and HDO production rates is 2.06+/-0.22 X 10**-4. This result shows that the D/H in the water of Oort-cloud comets is not as high as previously thought, at least for a fraction of the population, hence the paradigm of a single, archetypal D/H ratio for all Oort-cloud comets is no longer tenable. Nevertheless, the value measured in C/2009 P1 (Garradd) is significantly higher than the Earth's ocean value of 1.558 X 10**-4. The measured H_2^16O/H_2^18O ratio of 523+/-32 is, however, consistent with the terrestrial value.Comment: 6 pages with 4 figures and 1 table. Accepted for publication as a Letter in Astronomy & Astrophysic

    Galactic Effects on Habitability

    Full text link
    The galactic environment has been suspected to influence planetary habitability in many ways. Very metal-poor regions of the Galaxy, or those largely devoid of atoms more massive than H and He, are thought to be unable to form habitable planets. Moreover, if such planets do form, the young system is subjected to close stellar passages while it resides in its stellar birth cluster. Various potential hazards remain after clusters disperse. For instance, central galactic regions may present risks to habitability via nearby supernovae, gamma ray bursts (GRBs), and frequent comet showers. In addition, planets residing within very wide binary star systems are affected by the Galaxy, as local gravitational perturbations from the Galaxy can increase the binary's eccentricity until it destabilizes the planets it hosts. Here we review the most recent work on the main galactic influences over planetary habitability. Although there must be some metallicity limit below which rocky planets cannot form, recent exoplanet surveys show that they form around stars with a very large range of metallicities. Once formed, the probability of star clusters destabilizing planetary systems only becomes high for rare, extremely long-lived clusters. Regarding threats to habitability from supernovae, GRBs, and comet showers, many recent studies suggest that their hazards are more limited than originally thought. Finally, denser regions of the Galaxy enhance the threat that very wide binary companions pose to planetary habitability, but the probability that a very wide binary star disrupts habitability will always be substantially below 100% for any environment. While some Milky Way regions must be more hospitable to habitable planets than others, it is difficult to state that habitable planets are confined to any well-defined region of the Galaxy or that any other particular region of the Galaxy is uninhabitable.Comment: Invited review chapter, accepted for publication in the "Handbook of Exoplanets"; 19 pages; 2 figure

    Dynamical Evolution of Planetary Systems

    Full text link
    Planetary systems can evolve dynamically even after the full growth of the planets themselves. There is actually circumstantial evidence that most planetary systems become unstable after the disappearance of gas from the protoplanetary disk. These instabilities can be due to the original system being too crowded and too closely packed or to external perturbations such as tides, planetesimal scattering, or torques from distant stellar companions. The Solar System was not exceptional in this sense. In its inner part, a crowded system of planetary embryos became unstable, leading to a series of mutual impacts that built the terrestrial planets on a timescale of ~100 My. In its outer part, the giant planets became temporarily unstable and their orbital configuration expanded under the effect of mutual encounters. A planet might have been ejected in this phase. Thus, the orbital distributions of planetary systems that we observe today, both solar and extrasolar ones, can be different from the those emerging from the formation process and it is important to consider possible long-term evolutionary effects to connect the two.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H. Deeg & J.A. Belmont
    • …
    corecore