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ABSTRACT

The ultracool M-dwarf star TRAPPIST-1 is surrounded by seven planets configured in a resonant chain. Transit-timing variations
have shown that the planets are caught in multiple three-body resonances and that their orbits are slightly eccentric, probably
caused by resonant forcing. The current values of the eccentricities could be a remnant from their formation. Here, we run
numerical simulations using fictitious forces of trapping the fully grown planets in resonances as they migrated in the gas
disc, followed by numerical simulations detailing their tidal evolution. For a reduced disc scale height 4 ~ 0.03-0.05, the
eccentricities of the planets upon capture in resonance are higher than their current values by factors of a few. We show that
the current eccentricities and spacing of planets d to h are natural outcomes of coupled tidal evolution wherein the planets
simultaneously damp their eccentricities and separate due to their resonant interaction. We further show that the planets evolve
along a set of equilibrium curves in semimajor axis—eccentricity phase space that are defined by the resonances, and that
conserve angular momentum. As such, the current 8:5-5:3—(3:2)?—4:3-3:2 resonant configuration cannot be reproduced from a
primordial (3:2)*—4:3-3:2 resonant configuration from tidal dissipation in the planets alone. We use our simulations to constrain
the long-term tidal parameters k,/Q for planets b to e, which are in the range of 107> to 1072, and show that these are mostly
consistent with those obtained from interior modelling following reasonable assumptions.

Key words: methods: numerical —planets and satellites:: dynamical evolution and stability — planets and satellites: fundamental

parameters — planets and satellites: terrestrial planets.

1 INTRODUCTION

The star TRAPPIST-1 is an ultracool M-dwarf that harbours seven
roughly Earth-sized planets (Gillon et al. 2017). All of these planets
orbit within 0.07 au of the star, and have orbital periods from 1.5 d to
~19 d (Gillon et al. 2017; Grimm et al. 2018; Agol et al. 2021). The
planets are in a resonant chain, possibly involving all the planets,
which results in the libration of a number of three-body resonant
angles (Luger etal. 2017). The orbits of all planets appear to be mildly
eccentric, with eccentricities <0.01, although the orbits of the two
inner planets could be circular (Agol et al. 2021). The eccentricities
are possibly the result of forcing from the resonances or a remnant
of their formation. Each of the planets has a density intermediate
between the densities of compressed water ice and the Earth’s inner
core (Gillon et al. 2017; Barr, Dobos & Kiss 2018; Grimm et al.
2018; Agol et al. 2021), implying solid planets composed of rock,
metal (Elkins-Tanton & Seager 2008), and possibly ice if atmospheric
conditions allow (Turbet et al. 2020, see Fig. 1). With recent estimates
for the planetary masses the system appears dynamically stable on
Myr, and possibly Gyr time-scales (Grimm et al. 2018; Agol et al.
2021).

* E-mail: ramon.brasser@csfk.org

© 2022 The Author(s)

Published by Oxford University Press on behalf of Royal Astronomical Society

There is much uncertainty about the formation of the system,
which is an active topic of research. Based on dynamical simulations,
Tamayo et al. (2017) suggested that the current resonant structure
was the result of convergent migration within the primordial gas
disc. That same year Ormel, Liu & Schoonenberg (2017) suggested
that the system could have been formed through a combination of
planet migration and pebble accretion. More recently Huang & Ormel
(2022) expanded on the pebble accretion idea with the addition of
specific requirements for the interior structure of the disc and the
configuration of the planets.

Short-term (<1 Myr) numerical simulations indicate that for many
initial conditions within the observational uncertainties almost all of
the resonant angles appear to librate (Grimm et al. 2018; Brasser,
Barr & Dobos 2019; Agol et al. 2021). Their long-term (>1 Gyr)
stability cannot be determined with the current observational un-
certainties (Agol et al. 2021). From older observational data with
larger uncertainties Brasser et al. (2019) found that most three-body
resonances break on short time-scales (<1 Myr).

It is not clear whether the inner two planets, b and c, are truly
involved in mean-motion resonances. Planets b and c are close to a
mutual 8:5, and ¢ and d in a 5:3 resonance (Gillon et al. 2017; Luger
et al. 2017). This configuration warrants attention because the outer
five planets all reside in first-order mean motion resonances; these
two resonances are of second and third order, respectively. Indeed,
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Figure 1. H,O content (indicated by colours) for possible interior structures
at a given mass—radius pair of the TRAPPIST-1 planets. The mean of the H,O
mass fraction is presented (including liquid water, ice I, and high-pressure
ice polymorphs) for all possible interior structures calculated for each mass—
radius pairs. The calculation method used is the same as described in the
work of Dobos, Barr & Kiss (2019) with the additional condition that only
those interior structures were considered that contain 10-50 per cent mass
fraction of iron core. Masses and radii are from Agol et al. (2021) with black
dots denoting the mean values.

Teyssandier, Libert & Agol (2022) showed that convergent migration
in the gas disc leads to capture primarily in first-order mean-motion
resonances, and that the 8:5 resonance between planets b and c,
as well as the 5:3 between planets ¢ and d, are difficult to explain
via this mechanism. In this work, we explore whether the current
configuration can be obtained by tidal dissipation in the planets from
an initial configuration consisting only of first-order mean-motion
resonances because such a configuration is the expected outcome
from planet migration. In the subsection below this is explained in
more detail.

1.1 Basic outline of resonant trapping

The formation of the TRAPPIST-1 planets is not yet well understood,
but recent studies point to a potential combination of pebble accretion
and planet migration (Ormel et al. 2017; Unterborn et al. 2018;
Schoonenberg et al. 2019) possibly followed by rebound because of
the dispersion of the disc as well as tidal dissipation in the planets
(Huang & Ormel 2022). An alternative scenario relies on different
modes of migration (Ogihara et al. 2022). As the planets migrate
through the disc towards the star they will encounter mutual mean-
motion resonances (e.g. Petrovich, Malhotra & Tremaine 2013); this
is especially so if the innermost planet stalls at the inner edge of
the disc and the subsequent planet migrate towards it (e.g. Ogihara,
Duncan & Ida 2010).

The current configuration of the planets is in a suspected 8:5—
5:3—(3:2)2-4:3-3:2 resonant chain (Gillon et al. 2017; Luger et al.
2017), which can be obtained through planet migration (Tamayo
et al. 2017). Yet other simulations of the formation of the system
preferentially show trapping in a different configuration, e.g. (3:2)*—
4:3-3:2 (Huang & Ormel 2022; Teyssandier et al. 2022). Here, we
briefly describe how resonant trapping works and why the latter
configuration is more likely than the former.

Away from resonances, the averaged disturbing function that
describes the orbital evolution of two planets is the secular part,
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which is given by (Murray & Dermott 1999)
RS = %abgl/)z(oc) (e2 + e’z) — %ozbgl/)z(oc)ee/ cos(w — @), (1

where e and ¢ are the eccentricities of the inner and outer planet,
w and o are their longitudes of periastron, & = a/d is the ratio of
semimajor axes, and b')(«) are the so-called Laplace coefficients,
which can be expressed in terms of Gamma and hypergeometric
functions (Murray & Dermott 1999). In a two-or-more-planet system
each planet has a free eccentricity and a forced eccentricity caused
by their mutual perturbations. The motion of the eccentricities and
longitudes of perihelia of a two-planet system are coupled via

e expmy) = My expli(git + Bi)] + Miexpli(gat + B2)],
erexp(imy) = My expli(git + Bi)] + Masexpli(gat + B2)]. (2)

The M; ; terms are the free eccentricities, while the M; ; terms are
the forced eccentricities, and ¢ is the time. The frequencies g; are
the eccentricity eigenfrequencies with their corresponding phases
Bi, and 1> = —1 is the imaginary unit.

Near a mean-motion resonance the angles of the form ¢ = j;A +
o)+ jswm + jaw, where ji, .. ., ju are integers, will vary slowly,
on time-scales much longer than the orbital periods of the planets,
and cannot be eliminated from the problem through averaging. The
angle ¢ satisfies the D’ Alembert rule that >_;j; = 0.

When planets are in a mean-motion resonance the resonant
disturbing function will typically be of the form (Murray & Dermott
1999)

R =RE + el f(a) + f.(a)cos ), (3)

where fy(«) and f,(«) are functions of Laplace coefficients. It is
immediately obvious that the strength of the resonant perturbation
depends on the product el2le/l#! i e. on j3 + j;, which itself depends
onj; + j». For a first-order resonance, such as the 2:1, the 3:2, or the
4:3, we have |j; +j>| = land thus |j3 +j4| =1,and R cx eor R o< ¢'.
For a second-order resonance, such as the 3:1 or the 5:3, we have
li1 + j2| = 2, so that by necessity |j3 + js| = 2 and either R o< €2,
or R o ee’, or R o ¢'*. For a third-order resonance, such as the 4:1
or the 8:5, R is proportional to the third power in the eccentricities,
and so forth. A resonant pair of planets will have non-zero forced
eccentricities if they are in equilibrium.

The interaction of the planets with the gas disc causes them
to migrate towards the star and to have their free eccentricities
damped (Tanaka & Ward 2004) i.e. the M; ; terms will approach
zero — and by necessity so will the M; ; terms because they depend
indirectly on the M, ; terms. In essence, the planets approach the
mean-motion resonance with (close to) zero free eccentricities. For
low eccentricities the perturbations from first-order resonances will
far exceed those from second- or third-order resonances due to the
argument el2lel#4! in the disturbing function. Capture in (first-order)
resonance is facilitated by lower eccentricities (Henrard 1982), so
that the expectation is that the planets will be trapped into first-order
mean-motion resonances when they are migrating starwards, rather
than into higher order resonances.

Once the planets are captured into first-order mean-motion reso-
nances while they are migrating, each pair of planets will approach
the resonance with a period ratio greater than the exact resonant value,
and their eccentricities will increase due to the increasing importance
of the resonant perturbations over the secular perturbations. The
resulting eccentricities are forced eccentricities. The planets will
reach an equilibrium between the eccentricity pumping from the
resonance and the damping of the gas disc, with the equilibrium
eccentricity being approximately e ~ 1.3/ (Goldreich & Schlichting
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Figure 2. Normalized resonant loci of several resonances in the TRAPPIST-
1 system. The dots show the current configuration of the system. Arrows
indicate the direction of motion along the lines for disc-induced migration,
and for tidal dissipation in the planets.

2014 Pichierri, Morbidelli & Crida 2018; Brasser et al. 2019) where
h is the reduced scale height of the gas disc.

What we currently observe is that the outer five planets are in a 3:2—
3:2-4:3-3:2 chain (Luger et al. 2017) with eccentricities below 0.01,
but the inner three are in a potential 8:5-5:3 chain (Luger et al. 2017),
which is of third and second order respectively. The probability of
capturing the planets in these higher order resonances during the
migration phase is very low (Papaloizou, Szuszkiewicz & Terquem
2018). Tamayo et al. (2017) were able to migrate all seven planets
into the current resonant chain by starting the planets a few per cent
wide of their current resonances and only applying migration torques
to planet h. In contrast, Huang & Ormel (2022) advocate a primordial
(3:2)*—4:3-3:2 configuration that was disrupted by rebound from the
dispersing gas disc followed by tidal dissipation in the planets. In the
next section, we introduce a resonant model for such a chain which
encapsulates the main dynamical effects of planetary migration and
planetary tides on the planets.

1.2 Resonant loci for a TRAPPIST-1 (3:2)*—4:3-3:2 chain

The evolution of the system is readily derived from the parametriza-
tion shown in Fig. 2. All planet pairs will evolve along equilibrium
lines that are determined by the Hamiltonian of the system. The
resonant Hamiltonian model for any resonance or resonant chain
can be constructed following the recipe presented in Batygin &
Morbidelli (2013b) for two planets, and extended to the multiple-
planet case. For example, the framework presented in Pichierri,
Batygin & Morbidelli (2019) applies to three resonant planets; this
procedure is extended here to encompass the seven-planet case of
TRAPPIST-1. Even when the Hamiltonian is expanded to first order
in the eccentricities — which is justified by the low eccentricities
of the TRAPPIST-1 planets — the resulting Hamiltonian is not
integrable when there are more than two planets, and the resonant
equilibria cannot be found analytically. As such, one has to resort
to numerical optimization methods to obtain the location of the
equilibria of the resonant system, which we call resonant equilibrium
points. We implemented the resulting semi-analytical scheme in the
Mathematica language and used the FindRoot function to find
the extrema of the Hamiltonian.!

'We note that we included only interactions between neighbouring planets
in the resonant model. Given the large number of variables [there are 2(Np

Tides in the TRAPPIST-1 system 2375

Since the problem is scale free, let us think in terms of semimajor-
axis ratios between the planets; this is equivalent to having fixed
units of length such that the nominal resonant location of planet b
iS €.2. ap res = b, obs, 1.€. its currently observed value. For a fixed
value of the total angular momentum of the system one can find
one stable resonant locus, which then determines the semimajor
axes and eccentricities of all planets relative to each other via
the equilibrium resonant condition. By varying the value of the
total angular momentum, one gets a whole family of equilibrium
points, parametrized by the angular momentum of the system (or,
equivalently, by any one of the eccentricities or semimajor axes of a
specific TRAPPIST-1 planet).

Such scale-free equilibrium curves are displayed in Fig. 2 on a
plane with (a;  1/a;) x [(j; + 1)/j;]~** on the horizontal axis versus
the eccentricity e; on the vertical axis (i being a label for each pair of
subsequent planets along the chain), for the four outermost planets.
Here, j; are the indices of the (j; + 1): j; mean-motion resonances
along the (3:2)*—4:3-3:2 chain, namely j; = j, = j3 = j4 = js =
2 and js = 3. The main feature to note of these curves is that at
decreasing eccentricities the resonant loci deviate away from the
exact commensurability (a; 4 1/a;) x [(j; + 1)/j;]7%® = 1 this effect
is well known (e.g. Delisle et al. 2012; Pichierri et al. 2019) and is
due to the faster precession of the pericentres at vanishing e because
to first order @ o e~!. The resonant locus for a single-planet pair
is linked to corresponding loci for all other planet pairs by the total
angular momentum of the system. Therefore, in a resonant chain,
lowering the eccentricity of one planet along the curve forces all
other eccentricities to decrease as well. The dots show the current
normalized semimajor axial ratio and eccentricities of planets e to
h. Migration induced by disc torques will cause each planet to move
leftwards along the equilibrium lines while planetary tides will cause
them to move in the opposite direction (Delisle et al. 2012; Pichierri
et al. 2019).

Here, we investigate the tidal evolution of the system starting from
both the current resonant chain and a (3:2)*—4:3-3:2 configuration
with the aim to constrain the tidal parameters in some of the inner
four planets. We further aim to establish whether the current state
can be reproduced through tidal dissipation in the planets from a
primordial (3:2)*—4:3-3:2 configuration. This problem was partially
studied by Papaloizou et al. (2018), but they used old values for the
planetary masses and radii. Here, we make use of the latest masses
and radii from Agol et al. (2021).

2 METHODOLOGY

2.1 Resonant trapping

The first step in our analysis of possible past and present resonant
states for the TRAPPIST-1 planets requires the build-up of a resonant
chain. Tamayo et al. (2017) showed that a TRAPPIST-1 system with
period ratios close to the current observed ones can be obtained by
implementing inward migration applied only to the outermost planet

— 1) degrees of freedom in a resonant chain of Ny planets, therefore 4(Np
— 1) = 24 variables for the full TRAPPIST-1 chain], this approach becomes
numerically more feasible since the stable equilibria we are interested in only
occur for values of the resonant arguments equal to 0 or 77, thus cutting by half
the number of equations to be solved numerically. This approach does not
consider the 2:1 contribution between planets e and g, which would shift the
loci only slightly in the semimajor-axial ratio v.s. e space, without however
changing the main feature of the resonant curves used in this paper.

MNRAS 515, 2373-2385 (2022)
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TRAPPIST-1h, thus hinting to a dynamical past marked by planet—
disc interactions reminiscent of type-I migration. We should keep
in mind that this approach to explain the precise formation history
of the system is probably too simplistic, since migration should be
applied to all planets at once, which, given their non-uniformity
in planetary mass along the chain, would actually result in both
convergent and divergent migration for specific planet pairs. Indeed,
more sophisticated formation histories seem to be necessary to form
an initial resonant state close to the current one (e.g. Huang & Ormel
2022). For the purposes of our analysis, however, we make use of a
recipe similar to that proposed by Tamayo et al. (2017) only so that
we can reliably form a desired chain, in order to then study its long-
term tidal evolution after gas disc dissipation. Indeed, the advantage
of the approach of Tamayo et al. (2017) is that migration only
involves planets that have already assumed a resonant relationship
with planets farther out, which makes the process more controllable.
It also allows the innermost planets to be captured in the high-order
8:5 and 5:3 resonances, even if one would actually expect first-
order resonances to be favoured as explained in the Introduction.
This trapping behaviour can be observed in the work of Teyssandier
et al. (e.g. 2022) and is confirmed by our own simulations of the
innermost three- and four-planet system under conventional type-I
migration prescriptions obtained from Cresswell & Nelson (2008).
The trapping in the higher order resonances is facilitated because
the planets approach these higher order resonances with already
non-zero eccentricities induced by their resonant interactions with
planets farther out.

For our migration simulations we used the N-body integrator
SyMBA (Duncan, Levison & Lee 1998), which was modified to
include the forces from a gas disc and migration, as detailed below.
We consider type-I inward migration applied to planet h only, with
a migration time-scale taken from Cresswell & Nelson (2008) in the
planar case:

g Twe o P(e)

e =257 1 dag) " (P(e) + |P(e)|> : )
where

P(e): 1+(2,285h)l/2+(28€4h)6' (5)

4
L= (z5m)
We instead apply eccentricity damping to all planets, following the
formula from Cresswell & Nelson (2008) in the planar case:

o= (;V;aéz {1 —0.14 (%)2 +0.06 (%)3} . 6)

In these formulae & = H/r is the reduced scale height of the disc, and
Twave 18 the wave time-scale given by (Tanaka & Ward 2004)

M* M* 4 -1
Twave = — | Q% 7
ave (mpl> <Zgas,pla§1> plo“K pl @)

where my, is the mass of the planet, M, that of the star, and Qg  is
the frequency of Keplerian motion, and all quantities with the label
‘pl” are evaluated at the location of the planet. We used aspect ratios
values of & = 0.04 and & = 0.05, which has the effect of obtaining
slightly different capture eccentricities, since ecyp. & +/T/Ta ~ 1.3h
(Goldreich & Schlichting 2014; Pichierri et al. 2018, see also
Section 1.1). The same formula shows that 7,,. does not influence
the final captured state, and thus neither does the surface density
X gas, pl» Provided that migration is slow enough to allow for adiabatic
resonant capture. The masses of the individual planets used in this
simulation are 1.43, 1.34, 0.37, 0.68, 1.02, 1.29, and 0.31 Mg.

MNRAS 515, 2373-2385 (2022)

2.2 SWIFT MYVS frequency map analysis

After trapping the planets into a resonant chain we need to establish
how close the planets are to actual resonances. It is not sufficient
to look at the evolution of the semimajor axes or the resonant
angles, because the latter can still librate far from resonance if the
system is tidally evolved (Delisle et al. 2012; Batygin & Morbidelli
2013a). In most N-body codes, such as SWIFT MVS (Mixed Variable
Symplectic) (Levison & Duncan 1994) or Mercury (Chambers 1999),
the semimajor axis output are osculating values that depend on the
relative positions of the planets to each other. These osculating values
will not yield high-precision orbital frequencies without filtering. As
such, we have taken a different approach and implemented direct
Fourier analysis in the N-body symplectic integrator SWIFT MVS
(Levison & Duncan 1994) as follows.

During the simulations the x and y co-ordinates of the planets are
stored in arrays, which are thinned by a factor of four to conserve
memory. The MVS method relies on the symplectic mapping of
Wisdom & Holman (1991), which requires at least 20 steps per
orbit to preserve accuracy. Our thinning therefore leaves at least five
coordinate values for the orbit of the innermost planet which, through
experimentation, we have determined to be enough to ensure an
accurate computation of the orbital frequency. The size of the arrays
is an input parameter, which needs to be equal to a power of two, and
which has a current maximum dimension of 262 144 (although this
can be increased if needed). Once the arrays are full, their data are
passed to a subroutine which uses the frequency-modified Fourier
transform (FMFT) method of gidlichovsk}'f & Nesvorny (1996) to
compute the orbital frequencies of the planets with the corresponding
amplitudes — which for low-eccentricity orbits are approximately
equal to the semimajor axes — and initial phases. The FMFT routine
by Sidlichovsky & Nesvorny (1996) contains a Hanning window
filter that removes short-period oscillations and cleans the signal.
The output is written to a file as the simulation runs.

Once the FMFT subroutine has finished the simulation carries on
until the arrays are full again, the frequencies are computed again
over the next interval and written to disc, and the process is repeated
until the simulation ends. At the end of the simulation, there exists
a file whose output contains the orbital frequencies of all the planets
computed over a series of time intervals of at most 1 048 576 time-
steps for each interval. One may then apply Laskar’s frequency map
analysis (FMA, Laskar 1993) to the data.

2.3 Application of SWIFT MVS FMA: analysis of the current
system

We have simulated 1250 initial conditions of the TRAPPIST-1 system
from Agol et al. (2021). For the analysis presented below we picked
one system wherein the resonant angles of the outer five planets
librated with low amplitude, because this is the expected outcome
from a system that migrated into resonance in the presence of a gas
disc (Delisle et al. 2012). A resonant chain is characterized by all
the mean motions of the planets being near resonance, such that v =
(j + n' — jn is a relatively slowly varying variable for each pair
of planets, with a period much longer than the individual orbital
periods of the planets. We find that for all the five outer resonances
v = —4.68006 rad yr~'. To maintain the resonance implies that the
longitudes of periastrion of the five outer planets all regress with the
same frequency, i.e. for these planets we expect that 7> = —4.680 06
radyr~!. A Fourier analysis of the vectors eexp (1) indicates that
this is the case: the longitudes of periastron of planets d to h indeed
all regress with the same frequency v.
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Table 1. Frequency decomposition of planet d. The leftmost columns
show the frequencies of ezexp (1) and the rightmost columns those of
eqexp 131, — 2Aq — w 4)]. The amplitude columns are essentially the values
of the forced eccentricity of planet d.

Freq (radyr—') Amplitude (1073)  Freq (radyr~!)  Amplitude (103)

—4.68006 4.10185 —6.5363 x 1077 4.11497

0.112218 (g3) 0.477 816 —4.79227 (v — g3) 0.482074
0.180291 (g4) 0.389516 —4.86035 (v — ga4) 0.397321
0.168 342 (g2) 0.230 608 —4.84841 (v — g2) 0.236 361

However, libration of the resonant angles does not necessarily
imply that the planets are in resonance. According to Delisle et al.
(2012) the libration could be a geometric projection effect caused by
tidal separation. One way to check this is to decompose the quantity
eexp (1), where ¢ = (j + DA —jA —w or ¢ = (j + DA — ja
— @ . Delisle et al. (2012) claim that in a truly resonant case (j
+ n' — jn ~ 0, and thus (j + 1)A" — ji has a long period, and
the @ are dominated by the secular eigenmodes, which also have
long periods. If the libration of the angles is a projection effect due
to tidal separation, then (j + 1)A" — jA and @ are dominated by
short periods (high frequencies), with frequencies equal to v — g. In
Table 1, we show frequency output for planet d from a set of initial
conditions wherein all the resonant angles of the outer five resonances
librated (see Fig. 3). It is clear from this Fourier decomposition that
the current eccentricity of planet d is a purely forced eccentricity
caused by its proximity to resonance with planet e. We find that the
dominant terms in the decomposition of esexp [1(3A, — 24y — @ )]
have frequencies —4.792 and —4.860 rad yr~!, which are equal to v
— g3 and v — gy, respectively. For this argument the term with the
largest amplitude, however, has a frequency close to zero because it is

3 - 2Ap - Wy

3Ae - 2Ap - We
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caused by the forced eccentricity due to the resonance (Delisle et al.
2012). Similar results are obtained for the other resonant angles.
Thus, for this specific set of initial conditions we used here, the
planetary configuration appears to be resonant, but it is likely to be a
geometric projection. This is the expected outcome of migration into
a resonance with near-zero free eccentricity (Delisle et al. 2012). We
have not applied such a rigorous analysis to other initial conditions
from Agol et al. (2021) in part because the resonant angles do not
always librate. However, we expect that from analysing these systems
the conclusions will be similar.

2.4 Tidal evolution

In order to investigate the long-term effect of tidal damping in
the planets on their orbits, we have evolved the TRAPPIST-1
planetary system subjected to planetary tides with the SyMBAt code
(Puranam & Batygin 2018), which is based on Mercury-T (Bolmont
et al. 2015). We analyse the tidal evolution of two distinct sets of
initial conditions and apply dissipation in one or multiple planets
within these initial conditions. The initial conditions consisted of
both the current system and the (3:2)*—4:3-3:2 chain; the latter
initial conditions were obtained with migration in the gas disc. The
parameter space for tidal dissipation in the planets is large due to
the high number of planets and the potentially large range in k,/Q
per planet, where k; is the Love number and Q is the tidal quality
factor. To keep the number of simulations reasonable we have taken
a simplified approach. To keep the running time of the simulations
reasonable we have fixed the value of Q = 1073 for each planet,
while the k, values were taken from a best fit between the values
of Earth and Mars as a function of planetary mass, which results
in k, = 0.29(mp/M@)°'26. For each set of initial conditions we ran
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Figure 3. Evolution of resonant angles after migration through the gas phase into a (3:2)*~4:3-3:2 chain. Note the different scales on the vertical axes associated
to each angle. All planets are in resonance with each other, but the argument 3A. — 2A, — @ . circulates. For this configuration v = —2.640 06 rad yr_l apart

from the b-c pair for which v = —29.8 rad yr~!.
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panel shows the evolution of a resonant angle associated with pairs of planets, for period ratios close to the observed ones. All angles are seen to be librating at

the end of the simulation.

seven simulations. In the first four the damping occurred only in
a single planet b to e. In the fifth to seventh simulations damping
occurred in planets b and c, b to d, and b to e, respectively. Each
simulation was run for 1 Myr with a time-step of 10~ yr. A second
set of simulations was run with Q = 1072 for 10 Myr to verify
whether the results with Q@ = 10~3 were not subjected to excessive
damping.

2.5 Internal tidal models

To determine the possible interior structures of the planets, the model
described by Dobos et al. (2019) was used. This model assumes an
iron core, a rock mantle, a high-pressure ice polymorph layer, and
either liquid water or ice I state on the surface. We set the iron core
to have a mass fraction between 20 and 40 per cent of the total mass
of the body, to achieve a realistic restriction on probable interior
structures.

The mass, radius, and semimajor axis of the orbit are adapted from
Agol et al. (2021). Their uncertainties are used in a Monte Carlo
approach to generate a thousand sets of mass—radius—semimajor axis
values assuming a Gaussian distribution around the mean value.
For each set of parameters several interior structure models are
generated, and on average we compute 16000-25000 solutions
for each planet (a growing number from planet b to f) for a
given orbital eccentricity. This provides a large range of possible
solutions that preserve the most likely outcomes for the interior
compositions.

Using the model of Dobos et al. (2019), the tidal heating (generated
by the tidal forces from the star) is calculated for each interior
structure generated. This is a viscoelastic tidal heating model with
a Maxwell rheology, mimicking the effects of each layer. We
assume a temperature-dependent rheology that includes the effect

MNRAS 515, 2373-2385 (2022)

of melt on viscosity and shear modulus (Henning, O’Connell &
Sasselov 2009; Barr et al. 2018; Dobos et al. 2019). The k,/Q tidal
parameter is then calculated following the description of Brasser et al.
(2019).

3 RESULTS

3.1 Migration in the gas disc

We implemented the disc—planet interaction prescriptions described
in Section 2.1 to a seven-planet TRAPPIST-1 system. We use masses
drawn from Agol et al. (2021), thus assuming that the planets have
already fully formed and interact with the gaseous disc. We start each
simulation with all planet pairs at period ratios 2 per cent wider than
either their nominal resonant values for their currently observed 8:5—
5:3—(3:2)>—4:3-3:2 configuration, or the nominal resonant (3:2)*-
4:3-3:2 configuration. In all cases, the planets’ orbits are initiated on
a co-planar, circular configuration. Following the method of Tamayo
et al. ( 2017) planet h is the only one feeling a negative torque
from the disc, and it migrates inward. It is captured into the desired
3:2 resonance with planet g, and the two migrate in resonance
inward towards planet f. Planet g is subsequently captured in the
desired 4:3 resonance with planet f, and the process continues. This
numerical set-up allows us to form both an 8:5-5:3—(3:2)>—4:3-3:2
chain and a (3:2)*—4:3-3:2 chain for the TRAPPIST-1 system by
altering the initial positions of planets b and ¢ between the two cases
. The evolution of the resonant angle for each resonance during
the migration attempting to reproduce the current resonant chain is
shown in Fig. 4. The (3:2)*—4:3-3:2 chain has been suggested by
Huang & Ormel (2022) to be a natural outcome of type-I migration,
and Teyssandier et al. ( 2022) show that trapping in multiple 3:2
resonances is the expected outcome, even for the b-c and c-d pairs.
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When we formed the (3:2)*—4:3-3:2 chain we found that planet b
was not always deeply in resonance. In order to obtain a system
deeper into the resonance for planet b, we also apply artificial
migration to it, but smoothly reverse the sign of the torque from
negative to positive around a location close to the current observed
location of the planet. In this manner, we simulate a simple planet
trap (Masset et al. 2006, using the prescription from Pichierri et al.
2018).

3.2 State of the system after migration in the gas disc

The first set of initial conditions that arose from the gas-driven mi-
gration simulations attempted to reproduce the current configuration,
i.e. the 8:5-5:3—(3:2)2—4:3-3:2 chain. We confirm that the resonant
angles of the last four resonances are librating, but not those of
the inner two pairs. The frequency for the outer four resonances is
found to be v = —1.744 00 rad yr~!, which is lower than the current
value of v = —4.68007 rad yr~'. This is expected because the closer
the planets migrate to the exact resonance the closer the absolute
frequency |v| will be to zero. After migration the planets were closer
to exact resonance so that their forced eccentricities are also higher
than the current values (see Fig. 2 for how the forced eccentricity
changes as a function of distance to exact resonance), and their
present eccentricities are probably the result of tidal damping in the
planets.

We created a second set of initial conditions where the planets were
migrated into a (3:2) “—4:3-3:2 chain in the presence of a gas disc
because this is a likely outcome (Huang & Ormel 2022; Teyssandier
et al. 2022). We have plotted all of the resonant angles of this chain
at the end of the migration in Fig. 3. It is clear that apart from 3A
. — 2\, — @, all of these angles are librating. For this particular
resonant chain we computed v = —2.640 06 rad yr~'. The longitudes
of periastron of planets c to e all regress with the same frequency, i.e.

for these planets zr = —2.64006 rad yr~'. An exception is planet
b, for which @ = 1.607 radyr~' and vy, = —29.809 radyr~'. It
appears as if the innermost pair of planets is not truly part of
the resonant chain, and all our attempts at trying to do so have
failed.

3.3 Tidal evolution of the current system

We have simulated the evolution of the resonant chain after gas-
driven migration with planetary tides included using SyMBAt. The
outcome of several attempts is shown in Fig. 5. The time axis is
scaled to the circularization time of the planet where the damping
occurs; for damping in b and ¢ we chose the circularization time for
planet ¢ and for damping in b, ¢, and d and b, c, d, and e we chose
the circularization time for planet d.

We show the evolution of the eccentricities (first and third
columns) and the ratio a/a, with time (second and fourth columns)
for various configurations of damping; here aj is the semimajor axis
at the beginning of the simulation. There are two immediate visible
trends.

First, the eccentricities of planets d to h damp due to dissipation
in (some of) the (other) planet(s). Second, all planets separate from
each other due to angular momentum conservation. The inner four
planets migrate inwards while the outer three migrate outwards. The
separation is clearly visible because the distance between the lines
in the second and fourth columns widens as time increases. Since
planets b and c are only weakly tied to the resonant chain consisting
of planets d to h we see that the eccentricities of planets b and c stay
low, while that of the outer five planets declines.

An alternative manner to display the tidal evolution is to make
use of the equilibrium curves, as is done in Fig. 2, where we have
computed the eccentricities of planets d to h versus the normalized
semimajor axial ratio (a; ; 1/a;) x [(j; + 1)/j;]7* of their resonances.
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Figure 7. Long-term averaged tidal parameters for plants b to e obtained
from dynamical analysis. The 1-sigma uncertainties are due to the different
outcomes of the tidal simulations: different simulations result in different tidal
circularization time-scales depending on which planet the damping occurs in.

As was described in the Introduction, tidal evolution will drive the
planets away from resonance so that the motion in this figure is
towards the bottom-right corner: the eccentricities decrease and the
separation between planets increases. The big dots show the current
configuration for planets e to h. It is clear that despite the age of
the system the outermost pairs are still very close to resonance, with
the normalized semimajor axial ratio between planets g and h being
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less than 1.009, while it is less than 1.005 for the other pairs. In
our simulations, the system likely started at higher eccentricity and
a lower semimajor axial ratio and then was allowed to tidally evolve
towards (and past) the current configuration.

One question arises from these results: Can we compute the long-
term average tidal dissipation parameters of the planets from this
evolution and compare them with those obtained from reasonable
interior models as in Barr et al. (2018)?

Yes, it turns out that we can use the tidal evolution to compute the
long-term k,/Q for the planets assuming that the outer five migrated
to their current configuration starting from an initial configuration
closer to resonance (Fig. 6). Their current mutual separation cannot
be overshot and thus we can compute the tidal parameters from
the time it takes to reach the current configuration of the outer five
planets starting from the resonant chain after migration. We proceed
as follows.

We compute the time it takes in the simulation for the eccentricities
of e, f, g, and h to decrease by a factor of the Euler’s number, ¢ =
2.71828.... We do this for each simulation wherein the damping
only happens in a single planet. The tidal parameters input into the
simulations yield a simulation tidal damping time-scale. From the
eccentricity evolution, depending on the specific simulation and in
which planet the damping occurs, we obtain the true damping time-
scale in one of the planets b to e by multiplying the simulation running
time with the simulation damping time-scale. The long-term value
of k»/Q is then obtained from (e.g. Batygin & Morbidelli 2013a)

o\ _ 2 m(a
<Q>_21nreM* (Rp> ’ ®

where 7. is the true eccentricity damping time-scale and R, is the
radius of the planet. The result is displayed in Fig. 7, where we
plot the damping time-scale versus the long-term k,/Q value. The
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Figure 8. Tidal parameters for plants b to f obtained from interior modelling
as a function of eccentricity (coloured diagonal bands). The results from
the dynamical analyses are overplotted as small circles with error bars. The
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comparison. Horizontal error bars: range of eccentricity values based on the
work of Agol et al. (2021). Vertical error bars: possible range of the k,/Q tidal
parameter based on our dynamical simulations (see also Fig. 7).

uncertainties in both quantities are due to variations in outcome
between simulations.

We compare the k,/Q values obtained from dynamical simulations
with those obtained from simulations from interior modelling as a
function of eccentricity. The results of these simulations for planets
b to f are shown in Fig. 8; the interior modelling simulations do not
yield k,/Q values for planets g and h because the tidal dissipation
is too weak. For each orbital eccentricity value that we tested
there is a range of possible k,/Q parameters as a consequence
of different possible interior structures and uncertainties in the
planets’ mass, radius, and semimajor axis. The results are plotted
with semitransparent colours, making the less likely solutions (at
the border or the ranges) appear in a shade of grey. The farther a
planet is from the host star, the higher orbital eccentricity it needs
to induce tidal heating in the body that is higher than heating from
the star or from radioactive decay; this explains why the curves
start at higher eccentricity values from planets b to f. The k,/Q
parameter monotonically decreases with orbital eccentricity because
the heat flux is a constant value. Horizontal error bars show the
possible eccentricity range of each planet based on the observations
of Agol et al. (2021), while vertical error bars represent the results
of the dynamic simulation in accordance with Fig 7. Apart from
planets b and d, within uncertainty the values of k,/Q from dynamics
and interior modelling match. Considering also the current orbital
eccentricities of the planets, we get the following results for the other
three planets. For planet ¢ the interior models yield k2/Q = (8 £4) x
10~* with orbital eccentricity between 0.0013 and 0.0028; for planet
e the two models (dynamical and interior) combined yield a value
of k,/Q in the range (0.007, 0.0092), which is narrower than that
obtained only from dynamics or only based on interior modelling;
and for planet f the interior models yield k,/Q in the range (0.0114,
0.0138). Just like in Brasser et al. (2019) the tidal parameter values
show some differences with the outcome from dynamics, but given
the uncertainties and the number of parameters involved the near
agreement is encouraging. Indeed, the agreement is better than in
Brasser et al. (2019), most likely due to improved masses, radii, and
eccentricities of the planets, and a corresponding narrower range of
interior compositions and amount of tidal heating.
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Brasser et al. (2019) suggested from dynamical simulations that
for planets b and ¢ k/Q > 2 x 107 and k,/Q = 1073 respectively,
while interior models with planetary mass and radii data available at
that time implied k,/Q values of a factor of a few lower. Bolmont et al.
(2020) computed k,/Q for planet e for a variety of interior models
and forcing frequencies, in which they have a homogenous interior
and a layered one. At the current orbital frequency of planet e their
computed value of k,/Q in the layered model is about a factor of
five lower than ours derived from dynamics. For their homogenous
model their derived value agrees with our interior modelling. For
planet b, Huang & Ormel (2022) suggest that Q ~ 200k, from their
tidal evolution simulations, so that k»/Q &~ 5 x 1073, which is close
to our value obtained from dynamics, but is much higher than those
obtained from the interior models.

3.4 Tidal evolution of a (3:2)*~4:3-3:2 chain

In this subsection we investigate whether can we reproduce the
current configuration of the system from the more compact (3:2)*~
4:3-3:2 chain.

The tidal evolution of a (3:2)*~4:3-3:2 chain is shown in Figs 9 and
10. In some cases — such as when there is only damping in planet d,
in planet e, or planets b and ¢ — the eccentricities sometimes increase
before decreasing again. This is due to a pair of planets crossing a
mean-motion resonance as they migrate divergently. We have found
that in the cases where there is a lot of separation planets g and h
cross their 5:3 resonance, while in the bottom panels (damping in
planet e) planets b and ¢ cross the 3:2 after about 70 circularization
times (7 ); the same happens when there is damping in planet d
(third row, left-most panels) after about 30 7¢.. In contrast, in Fig. 5
we placed the planets closer to their current configuration and no
resonances were crossed; the eccentricities of the five outer planets
declined monotonically and the planets smoothly separate from each
other. Fig. 10 is similar to Fig. 6.

It is clear from Figs 9 and 10 that dissipation in the planets
alone does not reproduce the current configuration. Dissipation
in the planets decreases the total energy, but keeps the angular
momentum constant. The orbital angular momentum is given by L =
%‘1 Va(l — e?). After the gas-driven migration into a (3:2)*—4:3-3:2
chain the fraction of the total orbital angular momentum in the planets
in our simulations is 15.2, 16.4, 5.2, 11.0, 18.7, 26.2, and 7.3 per cent
with the masses that we have employed. Thus, even though planet f
is much farther away than planet c, it has a comparable amount of the
total orbital angular momentum because the inner two planets are the
most massive, and because of the weak +/a dependence on the dis-
tance (the eccentricity contribution is negligibly small). Furthermore,
in the (3:2)*—4:3-3:2 chain the inner four planets contain roughly half
of the total orbital angular momentum. For the current configuration
of the planets the fractions of the total orbital angular momentum
are 14.6, 16.1, 5.3, 11.1, 19.0, 26.6, and 7.3 per cent, respectively,
for the set of representative initial conditions that we have chosen;
thus the fraction of the inner two planets has decreased and that of
the outer five has marginally increased. To reach their current orbits
from a primordial (3:2)*—4:3-3:2 chain and assuming that planet d
experienced almost no migration the semimajor axis of planet b had
to decrease by 10 per cent and that of planet ¢ by 7 per cent. These
reductions are minimum values: if planet d is allowed to migrate
then the inner two planets would have initially resided even farther
away from the star and their reduction in angular momentum would
be even greater. From the bottom-right panel of Fig. 9, we see that
having tidal dissipation in planets b to e causes a decrease in planet
b’s semimajor axis of up to 6 percent to 0.94 and in planet c’s by
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Figure 9. Tidal evolution starting from a (3:2)*~4:3-3:2 TRAPPIST-1 chain. Different panels show the resulting evolution of the eccentricities and the relative
change in semimajor axis for different choices of tidal damping. Planet b is not deeply trapped in resonance with planet c, so its eccentricity remained low.
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Figure 10. Tidal evolution on equilibrium curves for a (3:2)*~4:3-3:2 chain, showing the outer five-planet resonant chain. The colours are indicated by the
legend. Large dots indicate the present configuration. The motion of the system is towards the right, i.e. towards greater separation and lower eccentricities.

up to 4 percent to 0.96 at the end of the simulation. This results in
a corresponding increase in the semimajor axis of planet h of about
10 per cent and up to 4 per cent for planet g. In contrast, planets e and
f generally do not migrate much (up to 2 per cent in extreme cases).
Such large amounts of outward migration amongst the outer two plan-
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ets occur to compensate for the inward migration of the inner planets,
but it is inconsistent with the outer planets’ current period ratio and
resonant configuration (see Fig. 6). The tidal motion has to occur
along the equilibrium curves and thus the large amount of inward
migration of the innermost planets would not only require the outer
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Figure 11. Tidal evolution starting with a fully resonant (3:2)*—4:3-3:2 chain and with stellar tides included. The colours are indicated by the legend. Planet b
rapidly detaches from the system and spirals towards the star, while eventually the same happens for planet c¢. The inward motion of planet ¢ drags planet d and

e with it, which causes planets f, g, and h to separate from the rest of the system.

five planets to have evolved to period ratios larger than observed, but
also that their eccentricities are much lower than their current values.
The current total orbital angular momentum is about 1.3 per cent
lower than in the resonant (3:2)*—4:3-3:2 chain after migration.
Planet b’s angular momentum now is 94.8 percent of that in the
(3:2)*~4:3-3:2 chain after migration, while it is 96.5 percent
for planet c assuming that we keep the position of planet
d fixed. This reduction in the orbital angular momentum of
these two planets equals the 1.3 percent reduction in the total
angular momentum when using the original fractions because
0.948 x 14.6 per cent + 0.965 x 16.5 per cent + 5.3 per cent +
11.1 per cent 4 19 per cent + 26.6 per cent + 7.3 per cent =
98.7 per cent. Since angular momentum has to be strictly conserved
for tidal dissipation in the planets we deem it unlikely, if not
impossible, that tidal dissipation in the planets alone has resulted in
the current configuration starting from a primordial (3:2)*—4:3-3:2
chain. Testing simulations with dissipation in the outer three planets
will not change that outcome because the planets evolve along the
equilibrium curves. Furthermore, the long-term k,/Q values in the
planets that we obtain from the tidal evolution with these initial con-
ditions are the same as those presented in Fig. 7 within uncertainty.
The tidal parameters assumed here are may be extreme to keep
simulation time short, but tests with tidal damping that is an order
of magnitude weaker yields the same outcome due to the angular
momentum conservation.

3.5 Inward migration of planets b and c

One manner in which the inner two planets can lose angular
momentum is through tidal dissipation in the star. For a constant
Q tidal model the semimajor axis evolution of the planets due to tidal

dissipation in the star is given by (e.g. Murray & Dermott 1999)

2 13/2 dao 12 ky G 12 5
—a;" 1—(— =-3(—= — Rt., 9
13 [ (af) Q/.\M, et ©

where ¢, is the age of the star, R, is the stellar radius, M, is the
stellar mass, ag is the initial semimajor axis, and ay is the current
value. We can solve this equation for (,/¢),. Starting planet b in
a 3:2-3:2 with planets ¢ and d, assuming that the age of the star
t, = 7.6 £ 2.2 Gyr (Burgasser & Mamajek 2017), and that the
stellar radius and rotation rate have stayed the same during this
whole time yields (k,/Q), = 4.2718 x 10~#; for planet ¢ we get
(k2/ Q). = 1.870% x 1073, which is the same order of magnitude
value. These values are much higher than that expected in solar-
type stars, for which typically (ka/Q)s< 1077 (e.g. Penev et al.
2012; Ogilvie 2014). Even for lower mass stars these high values of
(k2/ Q). are not expected, even though the tidal dissipation parameter
decreases before the star reaches the main sequence (Barker 2020).
The uncertainties in the calculated stellar tidal parameters are mostly
due to the uncertain age of the star.

However, when we add dissipation in the star into our numerical
simulations starting with a (3:2)*—4:3-3:2 chain we run into a few
problems. An example of the evolution is displayed in Fig. 11. First,
the resonance between planets ¢ and d drags planet d with planet ¢
as it spirals towards the star. Eventually the pair will decouple and
planet d will recede from the star because it is outside the co-rotation
radius. However, by this time planet b has already spiralled too far
inwards to be consistent with the current configuration. Second, by
the time the c-d pair decouples and planet ¢ begins to spiral towards
the star, the g-h pair has crossed the 5:3 mean motion resonance due to
the near-conservation of the angular momentum due to the resonant
chain and that the planets try to evolve along the equilibrium curves.
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The reason that planet b decouples quickly from the system and
spirals inwards is because we were unable to migrate it deep into a
resonance with planet c.

We when taking into account the reduction in stellar radius with
time as predicted from isochrones by Baraffe et al. (2015) we still
obtain a high long-term average value of (k,/Q), compared to that of
solar-type stars.

4 DISCUSSION

In the previous sections we argued that it is difficult to trap the planets
into their current resonant configuration during an episode of gas-
driven migration. Instead, the expected outcome is that the planets
were caught in a chain of first-order mean-motion resonances (e.g.
Ormel et al. 2017; Huang & Ormel 2022; Teyssandier et al. 2022).
From such a configuration, such as a (3:2)*~4:3-3:2 chain, reaching
the current configuration with dissipation in the planets only seems
unlikely. Yet there are a few potential caveats. For example, changing
the dissipation parameters, or the strength of the dissipation in the
planets relative to each other will not alter the outcome, because
tidal dissipation in the planets conserves angular momentum, and the
current configuration has less angular momentum than the (3:2)*-
4:3-3:2 chain.

Does the tidal model matter? Probably, but the differences between
several models are not so great (e.g. Boue & Efroimsky 2019 ).
At the moment we only possess one N-body code with a built-in
tidal model, and thus we cannot test other models. However, the
planets evolve along the equilibrium curves and the planetary tides
conserve angular momentum. As such, we argue that changing the
tidal model will not change the outcome because all tidal models
conserve angular momentum; the only thing that could change is the
evolution time-scale for a specific value of the tidal parameters.

Do the initial conditions matter? Yes, but starting from a different
resonant configuration means a different value of the total orbital
angular momentum, which stays constant during the tidal evolution
in the planets alone. Therefore, the precise initial conditions are
unimportant unless they are very close to the current configuration.

5 CONCLUSIONS

The TRAPPIST-1 system is lodged in a five- or possibly even seven-
planet resonant chain (Luger et al. 2017; Agol et al. 2021). As a
consequence of this configuration, the tidal evolution of each planet
cannot be calculated individually; rather the system evolves as one
unit. Due to the resonant chain the tidal evolution proceeds along a set
of equilibrium curves in semimajor axis—eccentricity space wherein
the planets separate from each other as their forced eccentricities are
damped by dissipation in the planets while keeping the total angular
momentum conserved. We show that the current 8:5-5:3—(3:2)>—4:3—
3:2 configuration cannot be reproduced from a primordial (3:2)*—
4:3-3:2 chain, so that an extra mechanism is required to decouple
planets b and ¢ from such a configuration. Dissipation in the star is
one such mechanism, but with the tidal model employed here the
decoupling of planet ¢ from planet d takes longer than the time it
takes for planet b to reach the star. As such it seems highly unlikely, if
not impossible, to reproduce the current configuration from a (3:2)*—
4:3-3:2 chain using tides alone.

We also show that constraining the k,/Q tidal parameter is possible
for some of the planets using both dynamical simulations on the
orbits of the planets and interior structure models. For planet ¢ we
get ky/Q = (8 £ 4) x 10~* with orbital eccentricity between 0.0013
and 0.0028. For planet e we get a range for k,/Q between 0.007 and
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0.0092, and for planet f between 0.0114 and 0.0138. For planets b
and d the values from dynamics and interior modelling do not match.
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