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A B S T R A C T 

The ultracool M-dwarf star TRAPPIST-1 is surrounded by seven planets configured in a resonant chain. Transit-timing variations 
have shown that the planets are caught in multiple three-body resonances and that their orbits are slightly eccentric, probably 

caused by resonant forcing. The current values of the eccentricities could be a remnant from their formation. Here, we run 

numerical simulations using fictitious forces of trapping the fully grown planets in resonances as they migrated in the gas 
disc, followed by numerical simulations detailing their tidal evolution. For a reduced disc scale height h ∼ 0.03–0.05, the 
eccentricities of the planets upon capture in resonance are higher than their current values by factors of a fe w. We sho w that 
the current eccentricities and spacing of planets d to h are natural outcomes of coupled tidal evolution wherein the planets 
simultaneously damp their eccentricities and separate due to their resonant interaction. We further show that the planets evolve 
along a set of equilibrium curves in semimajor axis–eccentricity phase space that are defined by the resonances, and that 
conserve angular momentum. As such, the current 8:5–5:3–(3:2) 2 –4:3–3:2 resonant configuration cannot be reproduced from a 
primordial (3:2) 4 –4:3–3:2 resonant configuration from tidal dissipation in the planets alone. We use our simulations to constrain 

the long-term tidal parameters k 2 / Q for planets b to e, which are in the range of 10 

−3 to 10 

−2 , and show that these are mostly 

consistent with those obtained from interior modelling following reasonable assumptions. 

Key words: methods: numerical – planets and satellites:: dynamical evolution and stability – planets and satellites: fundamental 
parameters – planets and satellites: terrestrial planets. 
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 I N T RO D U C T I O N  

he star TRAPPIST-1 is an ultracool M-dwarf that harbours seven 
oughly Earth-sized planets (Gillon et al. 2017 ). All of these planets
rbit within 0.07 au of the star, and have orbital periods from 1.5 d to
19 d (Gillon et al. 2017 ; Grimm et al. 2018 ; Agol et al. 2021 ). The

lanets are in a resonant chain, possibly involving all the planets, 
hich results in the libration of a number of three-body resonant 

ngles (Luger et al. 2017 ). The orbits of all planets appear to be mildly
ccentric, with eccentricities � 0.01, although the orbits of the two 
nner planets could be circular (Agol et al. 2021 ). The eccentricities
re possibly the result of forcing from the resonances or a remnant
f their formation. Each of the planets has a density intermediate 
etween the densities of compressed water ice and the Earth’s inner 
ore (Gillon et al. 2017 ; Barr, Dobos & Kiss 2018 ; Grimm et al.
018 ; Agol et al. 2021 ), implying solid planets composed of rock,
etal (Elkins-Tanton & Seager 2008 ), and possibly ice if atmospheric 

onditions allow (Turbet et al. 2020 , see Fig. 1 ). With recent estimates
or the planetary masses the system appears dynamically stable on 

yr, and possibly Gyr time-scales (Grimm et al. 2018 ; Agol et al.
021 ). 
 E-mail: ramon.brasser@csfk.org 
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There is much uncertainty about the formation of the system, 
hich is an active topic of research. Based on dynamical simulations,
amayo et al. ( 2017 ) suggested that the current resonant structure
as the result of convergent migration within the primordial gas 
isc. That same year Ormel, Liu & Schoonenberg ( 2017 ) suggested
hat the system could have been formed through a combination of
lanet migration and pebble accretion. More recently Huang & Ormel 
 2022 ) expanded on the pebble accretion idea with the addition of
pecific requirements for the interior structure of the disc and the
onfiguration of the planets. 

Short-term ( � 1 Myr) numerical simulations indicate that for many
nitial conditions within the observational uncertainties almost all of 
he resonant angles appear to librate (Grimm et al. 2018 ; Brasser,
arr & Dobos 2019 ; Agol et al. 2021 ). Their long-term ( > 1 Gyr)

tability cannot be determined with the current observational un- 
ertainties (Agol et al. 2021 ). From older observational data with
arger uncertainties Brasser et al. ( 2019 ) found that most three-body
esonances break on short time-scales ( < 1 Myr). 

It is not clear whether the inner two planets, b and c, are truly
nvolved in mean-motion resonances. Planets b and c are close to a

utual 8:5, and c and d in a 5:3 resonance (Gillon et al. 2017 ; Luger
t al. 2017 ). This configuration warrants attention because the outer
ve planets all reside in first-order mean motion resonances; these 

wo resonances are of second and third order, respectively. Indeed, 

http://orcid.org/0000-0003-3622-8712
mailto:brasser_astro@yahoo.com
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M

Figure 1. H 2 O content (indicated by colours) for possible interior structures 
at a given mass–radius pair of the TRAPPIST-1 planets. The mean of the H 2 O 

mass fraction is presented (including liquid water, ice I, and high-pressure 
ice polymorphs) for all possible interior structures calculated for each mass–
radius pairs. The calculation method used is the same as described in the 
work of Dobos, Barr & Kiss ( 2019 ) with the additional condition that only 
those interior structures were considered that contain 10–50 per cent mass 
fraction of iron core. Masses and radii are from Agol et al. ( 2021 ) with black 
dots denoting the mean values. 
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eyssandier, Libert & Agol ( 2022 ) showed that convergent migration
n the gas disc leads to capture primarily in first-order mean-motion
esonances, and that the 8:5 resonance between planets b and c,
s well as the 5:3 between planets c and d, are difficult to explain
ia this mechanism. In this work, we explore whether the current
onfiguration can be obtained by tidal dissipation in the planets from
n initial configuration consisting only of first-order mean-motion
esonances because such a configuration is the expected outcome
rom planet migration. In the subsection below this is explained in
ore detail. 

.1 Basic outline of resonant trapping 

he formation of the TRAPPIST-1 planets is not yet well understood,
ut recent studies point to a potential combination of pebble accretion
nd planet migration (Ormel et al. 2017 ; Unterborn et al. 2018 ;
choonenberg et al. 2019 ) possibly followed by rebound because of

he dispersion of the disc as well as tidal dissipation in the planets
Huang & Ormel 2022 ). An alternative scenario relies on different
odes of migration (Ogihara et al. 2022 ). As the planets migrate

hrough the disc towards the star they will encounter mutual mean-
otion resonances (e.g. Petrovich, Malhotra & Tremaine 2013 ); this

s especially so if the innermost planet stalls at the inner edge of
he disc and the subsequent planet migrate towards it (e.g. Ogihara,
uncan & Ida 2010 ). 
The current configuration of the planets is in a suspected 8:5–

:3–(3:2) 2 –4:3–3:2 resonant chain (Gillon et al. 2017 ; Luger et al.
017 ), which can be obtained through planet migration (Tamayo
t al. 2017 ). Yet other simulations of the formation of the system
referentially show trapping in a different configuration, e.g. (3:2) 4 –
:3–3:2 (Huang & Ormel 2022 ; Teyssandier et al. 2022 ). Here, we
riefly describe how resonant trapping works and why the latter
onfiguration is more likely than the former. 

Away from resonances, the averaged disturbing function that
escribes the orbital evolution of two planets is the secular part,
NRAS 515, 2373–2385 (2022) 
hich is given by (Murray & Dermott 1999 ) 

 

sec 
D = 

1 
8 αb 

(1) 
3 / 2 ( α) 

(
e 2 + e ′ 2 

) − 1 
4 αb 

(1) 
3 / 2 ( α) e e ′ cos ( � − � 

′ ) , (1) 

here e and e 
′ 

are the eccentricities of the inner and outer planet,
 and � 

′ 
are their longitudes of periastron, α = a / a 

′ 
is the ratio of

emimajor axes, and b ( j ) 
s ( α) are the so-called Laplace coefficients,

hich can be expressed in terms of Gamma and hypergeometric
unctions (Murray & Dermott 1999 ). In a two-or-more-planet system
ach planet has a free eccentricity and a forced eccentricity caused
y their mutual perturbations. The motion of the eccentricities and
ongitudes of perihelia of a two-planet system are coupled via 

 1 exp ( ı� 1 ) = M 1 , 1 exp [ ı( g 1 t + β1 )] + M 1 , 2 exp [ ı( g 2 t + β2 )] , 

 2 exp ( ı� 2 ) = M 2 , 1 exp [ ı( g 1 t + β1 )] + M 2 , 2 exp [ ı( g 2 t + β2 )] . (2) 

he M i , i terms are the free eccentricities, while the M i , j terms are
he forced eccentricities, and t is the time. The frequencies g i are
he eccentricity eigenfrequencies with their corresponding phases

i , and ı2 = −1 is the imaginary unit. 
Near a mean-motion resonance the angles of the form φ = j 1 λ +

 2 λ
′ + j 3 � + j 4 � 

′ 
, where j 1 , . . . , j 4 are integers, will v ary slo wly,

n time-scales much longer than the orbital periods of the planets,
nd cannot be eliminated from the problem through averaging. The
ngle φ satisfies the D’Alembert rule that 

∑ 

i j i = 0. 
When planets are in a mean-motion resonance the resonant

isturbing function will typically be of the form (Murray & Dermott
999 ) 

 = R 

sec 
D + e | j 3 | e ′| j 4 | ( f d ( α) + f e ( α) cos φ) , (3) 

here f d ( α) and f e ( α) are functions of Laplace coefficients. It is
mmediately obvious that the strength of the resonant perturbation
epends on the product e | j 3 | e ′| j 4 | i.e. on j 3 + j 4 , which itself depends
n j 1 + j 2 . For a first-order resonance, such as the 2:1, the 3:2, or the
:3, we have | j 1 + j 2 | = 1 and thus | j 3 + j 4 | = 1, and R ∝ e or R ∝ e ′ .
or a second-order resonance, such as the 3:1 or the 5:3, we have
 j 1 + j 2 | = 2, so that by necessity | j 3 + j 4 | = 2 and either R ∝ e 2 ,
r R ∝ e e ′ , or R ∝ e ′ 2 . For a third-order resonance, such as the 4:1
r the 8:5, R is proportional to the third power in the eccentricities,
nd so forth. A resonant pair of planets will have non-zero forced
ccentricities if they are in equilibrium. 

The interaction of the planets with the gas disc causes them
o migrate towards the star and to have their free eccentricities
amped (Tanaka & Ward 2004 ) i.e. the M i , i terms will approach
ero – and by necessity so will the M i , j terms because they depend
ndirectly on the M i , i terms. In essence, the planets approach the

ean-motion resonance with (close to) zero free eccentricities. For
ow eccentricities the perturbations from first-order resonances will
ar exceed those from second- or third-order resonances due to the
rgument e | j 3 | e ′| j 4 | in the disturbing function. Capture in (first-order)
esonance is facilitated by lower eccentricities (Henrard 1982 ), so
hat the expectation is that the planets will be trapped into first-order

ean-motion resonances when they are migrating starwards, rather
han into higher order resonances. 

Once the planets are captured into first-order mean-motion reso-
ances while they are migrating, each pair of planets will approach
he resonance with a period ratio greater than the exact resonant value,
nd their eccentricities will increase due to the increasing importance
f the resonant perturbations o v er the secular perturbations. The
esulting eccentricities are forced eccentricities. The planets will
each an equilibrium between the eccentricity pumping from the
esonance and the damping of the gas disc, with the equilibrium
ccentricity being approximately e ∼ 1.3 h (Goldreich & Schlichting

art/stac1907_f1.eps
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Figure 2. Normalized resonant loci of several resonances in the TRAPPIST- 
1 system. The dots show the current configuration of the system. Arrows 
indicate the direction of motion along the lines for disc-induced migration, 
and for tidal dissipation in the planets. 
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− 1) degrees of freedom in a resonant chain of N pl planets, therefore 4( N pl 

− 1) = 24 variables for the full TRAPPIST-1 chain], this approach becomes 
numerically more feasible since the stable equilibria we are interested in only 
occur for values of the resonant arguments equal to 0 or π , thus cutting by half 
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014 ; Pichierri, Morbidelli & Crida 2018 ; Brasser et al. 2019 ) where
 is the reduced scale height of the gas disc. 
What we currently observe is that the outer five planets are in a 3:2–

:2–4:3–3:2 chain (Luger et al. 2017 ) with eccentricities below 0.01, 
ut the inner three are in a potential 8:5–5:3 chain (Luger et al. 2017 ),
hich is of third and second order respectively. The probability of

apturing the planets in these higher order resonances during the 
igration phase is very low (Papaloizou, Szuszkiewicz & Terquem 

018 ). Tamayo et al. ( 2017 ) were able to migrate all seven planets
nto the current resonant chain by starting the planets a few per cent
ide of their current resonances and only applying migration torques 

o planet h. In contrast, Huang & Ormel ( 2022 ) advocate a primordial
3:2) 4 –4:3–3:2 configuration that was disrupted by rebound from the 
ispersing gas disc followed by tidal dissipation in the planets. In the
ext section, we introduce a resonant model for such a chain which
ncapsulates the main dynamical effects of planetary migration and 
lanetary tides on the planets. 

.2 Resonant loci for a TRAPPIST-1 (3:2) 4 –4:3–3:2 chain 

he evolution of the system is readily derived from the parametriza- 
ion shown in Fig. 2 . All planet pairs will evolve along equilibrium
ines that are determined by the Hamiltonian of the system. The 
esonant Hamiltonian model for any resonance or resonant chain 
an be constructed following the recipe presented in Batygin & 

orbidelli ( 2013b ) for two planets, and extended to the multiple-
lanet case. For example, the framework presented in Pichierri, 
atygin & Morbidelli ( 2019 ) applies to three resonant planets; this
rocedure is extended here to encompass the seven-planet case of 
RAPPIST-1. Even when the Hamiltonian is expanded to first order 

n the eccentricities – which is justified by the low eccentricities 
f the TRAPPIST-1 planets – the resulting Hamiltonian is not 
ntegrable when there are more than two planets, and the resonant 
quilibria cannot be found analytically. As such, one has to resort
o numerical optimization methods to obtain the location of the 
quilibria of the resonant system, which we call resonant equilibrium 

oints. We implemented the resulting semi-analytical scheme in the 
athematica language and used the FindRoot function to find 

he extrema of the Hamiltonian. 1 
 We note that we included only interactions between neighbouring planets 
n the resonant model. Given the large number of variables [there are 2( N pl 

t
c
l
c

Since the problem is scale free, let us think in terms of semimajor-
xis ratios between the planets; this is equi v alent to having fixed
nits of length such that the nominal resonant location of planet b
s e.g. a b, res = a b, obs , i.e. its currently observed value. For a fixed
alue of the total angular momentum of the system one can find
ne stable resonant locus, which then determines the semimajor 
xes and eccentricities of all planets relative to each other via
he equilibrium resonant condition. By varying the value of the 
otal angular momentum, one gets a whole family of equilibrium 

oints, parametrized by the angular momentum of the system (or, 
qui v alently, by any one of the eccentricities or semimajor axes of a
pecific TRAPPIST-1 planet). 

Such scale-free equilibrium curves are displayed in Fig. 2 on a
lane with ( a i + 1 / a i ) × [( j i + 1)/ j i ] −2/3 on the horizontal axis versus
he eccentricity e i on the vertical axis ( i being a label for each pair of
ubsequent planets along the chain), for the four outermost planets. 
ere, j i are the indices of the ( j i + 1): j i mean-motion resonances

long the (3:2) 4 –4:3–3:2 chain, namely j 1 = j 2 = j 3 = j 4 = j 6 =
 and j 5 = 3. The main feature to note of these curves is that at
ecreasing eccentricities the resonant loci deviate away from the 
xact commensurability ( a i + 1 / a i ) × [( j i + 1)/ j i ] −2/3 = 1; this effect
s well known (e.g. Delisle et al. 2012 ; Pichierri et al. 2019 ) and is
ue to the faster precession of the pericentres at vanishing e because
o first order �̇ ∝ e −1 . The resonant locus for a single-planet pair
s linked to corresponding loci for all other planet pairs by the total
ngular momentum of the system. Therefore, in a resonant chain, 
owering the eccentricity of one planet along the curve forces all
ther eccentricities to decrease as well. The dots show the current
ormalized semimajor axial ratio and eccentricities of planets e to 
. Migration induced by disc torques will cause each planet to mo v e
eftwards along the equilibrium lines while planetary tides will cause 
hem to mo v e in the opposite direction (Delisle et al. 2012 ; Pichierri
t al. 2019 ). 

Here, we investigate the tidal evolution of the system starting from
oth the current resonant chain and a (3:2) 4 –4:3–3:2 configuration 
ith the aim to constrain the tidal parameters in some of the inner

our planets. We further aim to establish whether the current state
an be reproduced through tidal dissipation in the planets from a
rimordial (3:2) 4 –4:3–3:2 configuration. This problem was partially 
tudied by Papaloizou et al. ( 2018 ), but they used old values for the
lanetary masses and radii. Here, we make use of the latest masses
nd radii from Agol et al. ( 2021 ). 

 M E T H O D O L O G Y  

.1 Resonant trapping 

he first step in our analysis of possible past and present resonant
tates for the TRAPPIST-1 planets requires the build-up of a resonant
hain. Tamayo et al. ( 2017 ) showed that a TRAPPIST-1 system with
eriod ratios close to the current observed ones can be obtained by
mplementing inward migration applied only to the outermost planet 
MNRAS 515, 2373–2385 (2022) 

he number of equations to be solved numerically. This approach does not 
onsider the 2:1 contribution between planets e and g, which would shift the 
oci only slightly in the semimajor-axial ratio v.s. e space, without ho we ver 
hanging the main feature of the resonant curves used in this paper. 
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RAPPIST-1h, thus hinting to a dynamical past marked by planet–
isc interactions reminiscent of type-I migration. We should keep
n mind that this approach to explain the precise formation history
f the system is probably too simplistic, since migration should be
pplied to all planets at once, which, given their non-uniformity
n planetary mass along the chain, would actually result in both
onv ergent and div ergent migration for specific planet pairs. Indeed,
ore sophisticated formation histories seem to be necessary to form

n initial resonant state close to the current one (e.g. Huang & Ormel
022 ). For the purposes of our analysis, ho we ver, we make use of a
ecipe similar to that proposed by Tamayo et al. ( 2017 ) only so that
e can reliably form a desired chain, in order to then study its long-

erm tidal evolution after gas disc dissipation. Indeed, the advantage
f the approach of Tamayo et al. ( 2017 ) is that migration only
nvolves planets that have already assumed a resonant relationship
ith planets farther out, which makes the process more controllable.

t also allows the innermost planets to be captured in the high-order
:5 and 5:3 resonances, even if one would actually expect first-
rder resonances to be fa v oured as explained in the Introduction.
his trapping behaviour can be observed in the work of Teyssandier
t al. (e.g. 2022 ) and is confirmed by our own simulations of the
nnermost three- and four-planet system under conventional type-I
igration prescriptions obtained from Cresswell & Nelson ( 2008 ).
he trapping in the higher order resonances is facilitated because

he planets approach these higher order resonances with already
on-zero eccentricities induced by their resonant interactions with
lanets farther out. 
For our migration simulations we used the N -body integrator

yMBA (Duncan, Levison & Lee 1998 ), which was modified to
nclude the forces from a gas disc and migration, as detailed below.

e consider type-I inward migration applied to planet h only, with
 migration time-scale taken from Cresswell & Nelson ( 2008 ) in the
lanar case: 

mig = 2 
τwave 

(2 . 7 + 1 . 1 α
 ) 
h 

−2 

(
P ( e) + 

P ( e) 

| P ( e) | 
)

, (4) 

here 

 ( e) = 

1 + 

(
e 

2 . 25 h 

)1 / 2 + 

(
e 

2 . 84 h 

)6 

1 − (
e 

2 . 02 h 

)4 . (5) 

e instead apply eccentricity damping to all planets, following the
ormula from Cresswell & Nelson ( 2008 ) in the planar case: 

e = 

τwave 

0 . 780 

[
1 − 0 . 14 

( e 

h 

)2 
+ 0 . 06 

( e 

h 

)3 
]

. (6) 

n these formulae h = H / r is the reduced scale height of the disc, and
wave is the wave time-scale given by (Tanaka & Ward 2004 ) 

wave = 

(
M ∗
m pl 

)( 

M ∗

 gas , pl a 

2 
pl 

) 

h 

4 
pl �

−1 
K, pl , (7) 

here m pl is the mass of the planet, M ∗ that of the star, and �K , pl is
he frequency of Keplerian motion, and all quantities with the label
pl’ are e v aluated at the location of the planet. We used aspect ratios
alues of h = 0.04 and h = 0.05, which has the effect of obtaining
lightly different capture eccentricities, since e capt. ≈

√ 

τe /τa ≈ 1 . 3 h
Goldreich & Schlichting 2014 ; Pichierri et al. 2018 , see also
ection 1.1 ). The same formula shows that τwave does not influence

he final captured state, and thus neither does the surface density
 gas, pl , provided that migration is slow enough to allow for adiabatic

esonant capture. The masses of the individual planets used in this
imulation are 1.43, 1.34, 0.37, 0.68, 1.02, 1.29, and 0.31 M ⊕. 
NRAS 515, 2373–2385 (2022) 
.2 SWIFT MVS frequency map analysis 

fter trapping the planets into a resonant chain we need to establish
ow close the planets are to actual resonances. It is not sufficient
o look at the evolution of the semimajor axes or the resonant
ngles, because the latter can still librate far from resonance if the
ystem is tidally evolved (Delisle et al. 2012 ; Batygin & Morbidelli
013a ). In most N -body codes, such as SWIFT MVS (Mixed Variable
ymplectic) (Levison & Duncan 1994 ) or Mercury (Chambers 1999 ),

he semimajor axis output are osculating values that depend on the
elative positions of the planets to each other. These osculating values
ill not yield high-precision orbital frequencies without filtering. As

uch, we have taken a different approach and implemented direct
ourier analysis in the N -body symplectic integrator SWIFT MVS
Levison & Duncan 1994 ) as follows. 

During the simulations the x and y co-ordinates of the planets are
tored in arrays, which are thinned by a factor of four to conserve
emory. The MVS method relies on the symplectic mapping of
isdom & Holman ( 1991 ), which requires at least 20 steps per

rbit to preserve accuracy. Our thinning therefore leaves at least five
oordinate values for the orbit of the innermost planet which, through
 xperimentation, we hav e determined to be enough to ensure an
ccurate computation of the orbital frequency. The size of the arrays
s an input parameter, which needs to be equal to a power of two, and
hich has a current maximum dimension of 262 144 (although this

an be increased if needed). Once the arrays are full, their data are
assed to a subroutine which uses the frequency-modified Fourier
ransform (FMFT) method of Šidlichovsk ́y & Nesvorn ́y ( 1996 ) to
ompute the orbital frequencies of the planets with the corresponding
mplitudes – which for low-eccentricity orbits are approximately
qual to the semimajor axes – and initial phases. The FMFT routine
y Šidlichovsk ́y & Nesvorn ́y ( 1996 ) contains a Hanning window
lter that remo v es short-period oscillations and cleans the signal.
he output is written to a file as the simulation runs. 
Once the FMFT subroutine has finished the simulation carries on

ntil the arrays are full again, the frequencies are computed again
 v er the next interval and written to disc, and the process is repeated
ntil the simulation ends. At the end of the simulation, there exists
 file whose output contains the orbital frequencies of all the planets
omputed o v er a series of time intervals of at most 1 048 576 time-
teps for each interval. One may then apply Laskar’s frequency map
nalysis (FMA, Laskar 1993 ) to the data. 

.3 Application of SWIFT MVS FMA: analysis of the current 
ystem 

e have simulated 1250 initial conditions of the TRAPPIST-1 system
rom Agol et al. ( 2021 ). For the analysis presented below we picked
ne system wherein the resonant angles of the outer five planets
ibrated with low amplitude, because this is the expected outcome
rom a system that migrated into resonance in the presence of a gas
isc (Delisle et al. 2012 ). A resonant chain is characterized by all
he mean motions of the planets being near resonance, such that ν =
 j + 1) n 

′ − jn is a relatively slowly varying variable for each pair
f planets, with a period much longer than the individual orbital
eriods of the planets. We find that for all the five outer resonances
= −4.680 06 rad yr −1 . To maintain the resonance implies that the

ongitudes of periastrion of the five outer planets all regress with the
ame frequency, i.e. for these planets we expect that �̇ = −4 . 680 06
ad yr −1 . A Fourier analysis of the vectors e exp ( ı� ) indicates that
his is the case: the longitudes of periastron of planets d to h indeed
ll regress with the same frequency ν. 
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Table 1. Frequency decomposition of planet d. The leftmost columns 
show the frequencies of e d exp (ı� d ) and the rightmost columns those of 
e d exp [ı(3 λe − 2 λd − � d )]. The amplitude columns are essentially the values 
of the forced eccentricity of planet d. 

Freq (rad yr −1 ) Amplitude (10 −3 ) Freq (rad yr −1 ) Amplitude (10 −3 ) 

−4.680 06 4.101 85 −6.5363 × 10 −7 4.11497 
0.112 218 ( g 3 ) 0.477 816 −4.792 27 ( ν − g 3 ) 0.482 074 
0.180 291 ( g 4 ) 0.389 516 −4.860 35 ( ν − g 4 ) 0.397 321 
0.168 342 ( g 2 ) 0.230 608 −4.848 41 ( ν − g 2 ) 0.236 361 
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Ho we ver, libration of the resonant angles does not necessarily 
mply that the planets are in resonance. According to Delisle et al.
 2012 ) the libration could be a geometric projection effect caused by
idal separation. One way to check this is to decompose the quantity
 exp (ıφ), where φ = ( j + 1) λ

′ − j λ − � or φ = ( j + 1) λ
′ − j λ

� 

′ 
. Delisle et al. ( 2012 ) claim that in a truly resonant case ( j

 1) n 
′ − jn ≈ 0, and thus ( j + 1) λ

′ − j λ has a long period, and
he � are dominated by the secular eigenmodes, which also have 
ong periods. If the libration of the angles is a projection effect due
o tidal separation, then ( j + 1) λ

′ − j λ and � are dominated by
hort periods (high frequencies), with frequencies equal to ν − g . In
able 1 , we show frequency output for planet d from a set of initial
onditions wherein all the resonant angles of the outer five resonances 
ibrated (see Fig. 3 ). It is clear from this Fourier decomposition that
he current eccentricity of planet d is a purely forced eccentricity 
aused by its proximity to resonance with planet e. We find that the
ominant terms in the decomposition of e d exp [ı(3 λe − 2 λd − � d )]
ave frequencies −4.792 and −4.860 rad yr −1 , which are equal to ν

g 3 and ν − g 4 , respectiv ely. F or this argument the term with the
argest amplitude, ho we ver, has a frequency close to zero because it is
igure 3. Evolution of resonant angles after migration through the gas phase into a 
o each angle. All planets are in resonance with each other, but the argument 3 λc −
rom the b-c pair for which ν = −29.8 rad yr −1 . 
aused by the forced eccentricity due to the resonance (Delisle et al.
012 ). Similar results are obtained for the other resonant angles.
hus, for this specific set of initial conditions we used here, the
lanetary configuration appears to be resonant, but it is likely to be a
eometric projection. This is the expected outcome of migration into 
 resonance with near-zero free eccentricity (Delisle et al. 2012 ). We
ave not applied such a rigorous analysis to other initial conditions
rom Agol et al. ( 2021 ) in part because the resonant angles do not
l w ays librate. Ho we v er, we e xpect that from analysing these systems
he conclusions will be similar. 

.4 Tidal evolution 

n order to investigate the long-term effect of tidal damping in
he planets on their orbits, we ha ve ev olved the TRAPPIST-1
lanetary system subjected to planetary tides with the SyMBAt code 
Puranam & Batygin 2018 ), which is based on Mercury-T (Bolmont
t al. 2015 ). We analyse the tidal evolution of two distinct sets of
nitial conditions and apply dissipation in one or multiple planets 
ithin these initial conditions. The initial conditions consisted of 
oth the current system and the (3:2) 4 –4:3–3:2 chain; the latter
nitial conditions were obtained with migration in the gas disc. The
arameter space for tidal dissipation in the planets is large due to
he high number of planets and the potentially large range in k 2 / Q
er planet, where k 2 is the Lo v e number and Q is the tidal quality
 actor. To k eep the number of simulations reasonable we have taken
 simplified approach. To keep the running time of the simulations
easonable we have fixed the value of Q = 10 −3 for each planet,
hile the k 2 values were taken from a best fit between the values
f Earth and Mars as a function of planetary mass, which results
n k 2 = 0.29( m p / M ⊕) 0.26 . For each set of initial conditions we ran
MNRAS 515, 2373–2385 (2022) 

(3:2) 4 –4:3–3:2 chain. Note the different scales on the v ertical ax es associated 
2 λb − � c circulates. For this configuration ν = −2.640 06 rad yr −1 apart 
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Figure 4. Resonant angle evolution during migration while attempting to reproduce the current configuration, close to a 8:5–5:3–3:2–3:2–4:3–3:2 chain. Each 
panel shows the evolution of a resonant angle associated with pairs of planets, for period ratios close to the observed ones. All angles are seen to be librating at 
the end of the simulation. 
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even simulations. In the first four the damping occurred only in
 single planet b to e. In the fifth to seventh simulations damping
ccurred in planets b and c, b to d, and b to e, respectively. Each
imulation was run for 1 Myr with a time-step of 10 −4 yr. A second
et of simulations was run with Q = 10 −2 for 10 Myr to verify
hether the results with Q = 10 −3 were not subjected to e xcessiv e
amping. 

.5 Internal tidal models 

o determine the possible interior structures of the planets, the model
escribed by Dobos et al. ( 2019 ) was used. This model assumes an
ron core, a rock mantle, a high-pressure ice polymorph layer, and
ither liquid water or ice I state on the surface. We set the iron core
o have a mass fraction between 20 and 40 per cent of the total mass
f the body, to achieve a realistic restriction on probable interior
tructures. 

The mass, radius, and semimajor axis of the orbit are adapted from
gol et al. ( 2021 ). Their uncertainties are used in a Monte Carlo

pproach to generate a thousand sets of mass–radius–semimajor axis
alues assuming a Gaussian distribution around the mean value.
or each set of parameters several interior structure models are
enerated, and on average we compute 16 000–25 000 solutions
or each planet (a growing number from planet b to f) for a
iven orbital eccentricity. This provides a large range of possible
olutions that preserve the most likely outcomes for the interior
ompositions. 

Using the model of Dobos et al. ( 2019 ), the tidal heating (generated
y the tidal forces from the star) is calculated for each interior
tructure generated. This is a viscoelastic tidal heating model with
 Maxwell rheology, mimicking the effects of each layer. We
ssume a temperature-dependent rheology that includes the effect
NRAS 515, 2373–2385 (2022) 
f melt on viscosity and shear modulus (Henning, O’Connell &
asselov 2009 ; Barr et al. 2018 ; Dobos et al. 2019 ). The k 2 / Q tidal
arameter is then calculated following the description of Brasser et al.
 2019 ). 

 RESULTS  

.1 Migration in the gas disc 

e implemented the disc–planet interaction prescriptions described
n Section 2.1 to a seven-planet TRAPPIST-1 system. We use masses
rawn from Agol et al. ( 2021 ), thus assuming that the planets have
lready fully formed and interact with the gaseous disc. We start each
imulation with all planet pairs at period ratios 2 per cent wider than
ither their nominal resonant values for their currently observed 8:5–
:3–(3:2) 2 –4:3–3:2 configuration, or the nominal resonant (3:2) 4 –
:3–3:2 configuration. In all cases, the planets’ orbits are initiated on
 co-planar, circular configuration. Following the method of Tamayo
t al. ( 2017 ) planet h is the only one feeling a ne gativ e torque
rom the disc, and it migrates inward. It is captured into the desired
:2 resonance with planet g, and the two migrate in resonance
nw ard tow ards planet f. Planet g is subsequently captured in the
esired 4:3 resonance with planet f, and the process continues. This
umerical set-up allows us to form both an 8:5–5:3–(3:2) 2 –4:3–3:2
hain and a (3:2) 4 –4:3–3:2 chain for the TRAPPIST-1 system by
ltering the initial positions of planets b and c between the two cases
 The evolution of the resonant angle for each resonance during
he migration attempting to reproduce the current resonant chain is
hown in Fig. 4 . The (3:2) 4 –4:3–3:2 chain has been suggested by
uang & Ormel ( 2022 ) to be a natural outcome of type-I migration,

nd Teyssandier et al. ( 2022 ) show that trapping in multiple 3:2
esonances is the expected outcome, even for the b-c and c-d pairs. 
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Figure 5. Tidal evolution of the current orbital configuration. The first and third columns show the eccentricities versus time while the second and fourth 
columns are the ratio a / a 0 , where a 0 is the initial semimajor axis. Colours are purple for planet b, green for c, light blue for d, orange for e, yellow for f, deep 
blue for g, and red for h. 
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When we formed the (3:2) 4 –4:3–3:2 chain we found that planet b
 as not al w ays deeply in resonance. In order to obtain a system
eeper into the resonance for planet b, we also apply artificial 
igration to it, but smoothly reverse the sign of the torque from

e gativ e to positive around a location close to the current observed
ocation of the planet. In this manner, we simulate a simple planet
rap (Masset et al. 2006 , using the prescription from Pichierri et al.
018 ). 

.2 State of the system after migration in the gas disc 

he first set of initial conditions that arose from the gas-driven mi-
ration simulations attempted to reproduce the current configuration, 
.e. the 8:5–5:3–(3:2) 2 –4:3–3:2 chain. We confirm that the resonant 
ngles of the last four resonances are librating, but not those of
he inner two pairs. The frequency for the outer four resonances is
ound to be ν = −1.744 00 rad yr −1 , which is lower than the current
alue of ν = −4.680 07 rad yr −1 . This is expected because the closer
he planets migrate to the exact resonance the closer the absolute 
requency | ν| will be to zero. After migration the planets were closer
o exact resonance so that their forced eccentricities are also higher 
han the current values (see Fig. 2 for how the forced eccentricity
hanges as a function of distance to exact resonance), and their 
resent eccentricities are probably the result of tidal damping in the 
lanets. 
We created a second set of initial conditions where the planets were 
igrated into a (3:2) 4 –4:3–3:2 chain in the presence of a gas disc

ecause this is a likely outcome (Huang & Ormel 2022 ; Teyssandier
t al. 2022 ). We have plotted all of the resonant angles of this chain
t the end of the migration in Fig. 3 . It is clear that apart from 3 λ
 

− 2 λb − � c all of these angles are librating. For this particular 
esonant chain we computed ν = −2.640 06 rad yr −1 . The longitudes
f periastron of planets c to e all regress with the same frequency, i.e.
or these planets �̇ = −2 . 640 06 rad yr −1 . An exception is planet
, for which �̇ = 1 . 607 rad yr −1 and νbc = −29.809 rad yr −1 . It
ppears as if the innermost pair of planets is not truly part of
he resonant chain, and all our attempts at trying to do so have
ailed. 

.3 Tidal evolution of the current system 

e have simulated the evolution of the resonant chain after gas-
riven migration with planetary tides included using SyMBAt. The 
utcome of several attempts is shown in Fig. 5 . The time axis is
caled to the circularization time of the planet where the damping
ccurs; for damping in b and c we chose the circularization time for
lanet c and for damping in b, c, and d and b, c, d, and e we chose
he circularization time for planet d. 

We show the evolution of the eccentricities (first and third 
olumns) and the ratio a / a 0 with time (second and fourth columns)
or various configurations of damping; here a 0 is the semimajor axis
t the beginning of the simulation. There are two immediate visible
rends. 

First, the eccentricities of planets d to h damp due to dissipation
n (some of) the (other) planet(s). Second, all planets separate from
ach other due to angular momentum conservation. The inner four 
lanets migrate inwards while the outer three migrate outwards. The 
eparation is clearly visible because the distance between the lines 
n the second and fourth columns widens as time increases. Since
lanets b and c are only weakly tied to the resonant chain consisting
f planets d to h we see that the eccentricities of planets b and c stay
ow, while that of the outer five planets declines. 

An alternative manner to display the tidal evolution is to make
se of the equilibrium curves, as is done in Fig. 2 , where we have
omputed the eccentricities of planets d to h versus the normalized
emimajor axial ratio ( a i + 1 / a i ) × [( j i + 1)/ j i ] −2/3 of their resonances.
MNRAS 515, 2373–2385 (2022) 
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Figure 6. Tidal evolution on equilibrium curves for the current system with a five-planet resonant chain. The colours correspond to planets e–h as indicated in 
the legend. Large dots indicate the present configuration. The motion of the system is towards the right, i.e. towards greater separation and lower eccentricities. 

Figure 7. Long-term averaged tidal parameters for plants b to e obtained 
from dynamical analysis. The 1-sigma uncertainties are due to the different 
outcomes of the tidal simulations: different simulations result in different tidal 
circularization time-scales depending on which planet the damping occurs in. 
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s was described in the Introduction, tidal evolution will drive the
lanets away from resonance so that the motion in this figure is
owards the bottom-right corner: the eccentricities decrease and the
eparation between planets increases. The big dots show the current
onfiguration for planets e to h. It is clear that despite the age of
he system the outermost pairs are still very close to resonance, with
he normalized semimajor axial ratio between planets g and h being
NRAS 515, 2373–2385 (2022) 
ess than 1.009, while it is less than 1.005 for the other pairs. In
ur simulations, the system likely started at higher eccentricity and
 lower semimajor axial ratio and then was allowed to tidally evolve
owards (and past) the current configuration. 

One question arises from these results: Can we compute the long-
erm average tidal dissipation parameters of the planets from this
volution and compare them with those obtained from reasonable
nterior models as in Barr et al. ( 2018 )? 

Yes, it turns out that we can use the tidal evolution to compute the
ong-term k 2 / Q for the planets assuming that the outer five migrated
o their current configuration starting from an initial configuration
loser to resonance (Fig. 6 ). Their current mutual separation cannot
e o v ershot and thus we can compute the tidal parameters from
he time it takes to reach the current configuration of the outer five
lanets starting from the resonant chain after migration. We proceed
s follows. 

We compute the time it takes in the simulation for the eccentricities
f e, f, g, and h to decrease by a factor of the Euler’s number, e =
.71828.... We do this for each simulation wherein the damping
nly happens in a single planet. The tidal parameters input into the
imulations yield a simulation tidal damping time-scale. From the
ccentricity evolution, depending on the specific simulation and in
hich planet the damping occurs, we obtain the true damping time-

cale in one of the planets b to e by multiplying the simulation running
ime with the simulation damping time-scale. The long-term value
f k 2 / Q is then obtained from (e.g. Batygin & Morbidelli 2013a ) 

(
k 2 

Q 

)
= 

2 

21 nτe 

m p 

M ∗

(
a 

R p 

)5 

, (8) 

here τ e is the true eccentricity damping time-scale and R p is the
adius of the planet. The result is displayed in Fig. 7 , where we
lot the damping time-scale versus the long-term k 2 / Q value. The
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Figure 8. Tidal parameters for plants b to f obtained from interior modelling 
as a function of eccentricity (coloured diagonal bands). The results from 

the dynamical analyses are o v erplotted as small circles with error bars. The 
colour of the circles match the colours of the bands for each planet for easy 
comparison. Horizontal error bars: range of eccentricity values based on the 
work of Agol et al. ( 2021 ). Vertical error bars: possible range of the k 2 / Q tidal 
parameter based on our dynamical simulations (see also Fig. 7 ). 
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ncertainties in both quantities are due to variations in outcome 
etween simulations. 

We compare the k 2 / Q values obtained from dynamical simulations
ith those obtained from simulations from interior modelling as a 

unction of eccentricity. The results of these simulations for planets 
 to f are shown in Fig. 8 ; the interior modelling simulations do not
ield k 2 / Q values for planets g and h because the tidal dissipation
s too weak. For each orbital eccentricity value that we tested 
here is a range of possible k 2 / Q parameters as a consequence
f different possible interior structures and uncertainties in the 
lanets’ mass, radius, and semimajor axis. The results are plotted 
ith semitransparent colours, making the less likely solutions (at 

he border or the ranges) appear in a shade of grey. The farther a
lanet is from the host star, the higher orbital eccentricity it needs
o induce tidal heating in the body that is higher than heating from
he star or from radioactive decay; this explains why the curves 
tart at higher eccentricity values from planets b to f. The k 2 / Q
arameter monotonically decreases with orbital eccentricity because 
he heat flux is a constant value. Horizontal error bars show the
ossible eccentricity range of each planet based on the observations 
f Agol et al. ( 2021 ), while vertical error bars represent the results
f the dynamic simulation in accordance with Fig 7 . Apart from
lanets b and d, within uncertainty the values of k 2 / Q from dynamics
nd interior modelling match. Considering also the current orbital 
ccentricities of the planets, we get the following results for the other
hree planets. For planet c the interior models yield k 2 / Q = (8 ± 4) ×
0 −4 with orbital eccentricity between 0.0013 and 0.0028; for planet 
 the two models (dynamical and interior) combined yield a value 
f k 2 / Q in the range (0.007, 0.0092), which is narrower than that
btained only from dynamics or only based on interior modelling; 
nd for planet f the interior models yield k 2 / Q in the range (0.0114,
.0138). Just like in Brasser et al. ( 2019 ) the tidal parameter values
ho w some dif ferences with the outcome from dynamics, but given
he uncertainties and the number of parameters involved the near 
greement is encouraging. Indeed, the agreement is better than in 
rasser et al. ( 2019 ), most likely due to impro v ed masses, radii, and
ccentricities of the planets, and a corresponding narrower range of 
nterior compositions and amount of tidal heating. 
Brasser et al. ( 2019 ) suggested from dynamical simulations that
or planets b and c k 2 / Q � 2 × 10 −4 and k 2 / Q � 10 −3 respectively,
hile interior models with planetary mass and radii data available at

hat time implied k 2 / Q values of a factor of a few lower. Bolmont et al.
 2020 ) computed k 2 / Q for planet e for a variety of interior models
nd forcing frequencies, in which the y hav e a homogenous interior
nd a layered one. At the current orbital frequency of planet e their
omputed value of k 2 / Q in the layered model is about a factor of
ve lower than ours derived from dynamics. For their homogenous 
odel their derived value agrees with our interior modelling. For 

lanet b, Huang & Ormel ( 2022 ) suggest that Q ≈ 200 k 2 from their
idal evolution simulations, so that k 2 / Q ≈ 5 × 10 −3 , which is close
o our value obtained from dynamics, but is much higher than those
btained from the interior models. 

.4 Tidal evolution of a (3:2) 4 –4:3–3:2 chain 

n this subsection we investigate whether can we reproduce the 
urrent configuration of the system from the more compact (3:2) 4 –
:3–3:2 chain. 
The tidal evolution of a (3:2) 4 –4:3–3:2 chain is shown in Figs 9 and

0 . In some cases – such as when there is only damping in planet d,
n planet e, or planets b and c – the eccentricities sometimes increase
efore decreasing again. This is due to a pair of planets crossing a
ean-motion resonance as they migrate divergently. We have found 

hat in the cases where there is a lot of separation planets g and h
ross their 5:3 resonance, while in the bottom panels (damping in
lanet e) planets b and c cross the 3:2 after about 70 circularization
imes ( T circ ); the same happens when there is damping in planet d
third row, left-most panels) after about 30 T circ . In contrast, in Fig. 5
e placed the planets closer to their current configuration and no

esonances were crossed; the eccentricities of the five outer planets 
eclined monotonically and the planets smoothly separate from each 
ther. Fig. 10 is similar to Fig. 6 . 
It is clear from Figs 9 and 10 that dissipation in the planets

lone does not reproduce the current configuration. Dissipation 
n the planets decreases the total energy, but keeps the angular
omentum constant. The orbital angular momentum is given by L =

m p 

M ∗

√ 

a(1 − e 2 ) . After the gas-driven migration into a (3:2) 4 –4:3–3:2 
hain the fraction of the total orbital angular momentum in the planets 
n our simulations is 15.2, 16.4, 5.2, 11.0, 18.7, 26.2, and 7.3 per cent
ith the masses that we have employed. Thus, even though planet f

s much f arther aw ay than planet c, it has a comparable amount of the
otal orbital angular momentum because the inner two planets are the

ost massive, and because of the weak 
√ 

a dependence on the dis-
ance (the eccentricity contribution is negligibly small). Furthermore, 
n the (3:2) 4 –4:3–3:2 chain the inner four planets contain roughly half
f the total orbital angular momentum. For the current configuration 
f the planets the fractions of the total orbital angular momentum
re 14.6, 16.1, 5.3, 11.1, 19.0, 26.6, and 7.3 per cent, respectively,
or the set of representative initial conditions that we have chosen;
hus the fraction of the inner two planets has decreased and that of
he outer five has marginally increased. To reach their current orbits
rom a primordial (3:2) 4 –4:3–3:2 chain and assuming that planet d
xperienced almost no migration the semimajor axis of planet b had
o decrease by 10 per cent and that of planet c by 7 per cent. These
eductions are minimum values: if planet d is allowed to migrate
hen the inner two planets would have initially resided even farther
way from the star and their reduction in angular momentum would
e even greater. From the bottom-right panel of Fig. 9 , we see that
aving tidal dissipation in planets b to e causes a decrease in planet
’s semimajor axis of up to 6 per cent to 0.94 and in planet c’s by
MNRAS 515, 2373–2385 (2022) 
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M

Figure 9. Tidal evolution starting from a (3:2) 4 –4:3–3:2 TRAPPIST-1 chain. Different panels show the resulting evolution of the eccentricities and the relative 
change in semimajor axis for different choices of tidal damping. Planet b is not deeply trapped in resonance with planet c, so its eccentricity remained low. 

Figure 10. Tidal evolution on equilibrium curves for a (3:2) 4 –4:3–3:2 chain, showing the outer five-planet resonant chain. The colours are indicated by the 
legend. Large dots indicate the present configuration. The motion of the system is towards the right, i.e. towards greater separation and lower eccentricities. 
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p to 4 per cent to 0.96 at the end of the simulation. This results in
 corresponding increase in the semimajor axis of planet h of about
0 per cent and up to 4 per cent for planet g. In contrast, planets e and
 generally do not migrate much (up to 2 per cent in extreme cases).
uch large amounts of outward migration amongst the outer two plan-
NRAS 515, 2373–2385 (2022) 
ts occur to compensate for the inward migration of the inner planets,
ut it is inconsistent with the outer planets’ current period ratio and
esonant configuration (see Fig. 6 ). The tidal motion has to occur
long the equilibrium curves and thus the large amount of inward
igration of the innermost planets would not only require the outer
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Figure 11. Tidal evolution starting with a fully resonant (3:2) 4 –4:3–3:2 chain and with stellar tides included. The colours are indicated by the legend. Planet b 
rapidly detaches from the system and spirals towards the star, while eventually the same happens for planet c. The inward motion of planet c drags planet d and 
e with it, which causes planets f, g, and h to separate from the rest of the system. 
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ve planets to have evolved to period ratios larger than observed, but
lso that their eccentricities are much lower than their current values. 

The current total orbital angular momentum is about 1.3 per cent 
ower than in the resonant (3:2) 4 –4:3–3:2 chain after migration. 
lanet b’s angular momentum now is 94.8 per cent of that in the
3:2) 4 –4:3–3:2 chain after migration, while it is 96.5 per cent 
or planet c assuming that we keep the position of planet 
 fixed. This reduction in the orbital angular momentum of 
hese two planets equals the 1.3 per cent reduction in the total
ngular momentum when using the original fractions because 
 . 948 × 14 . 6 per cent + 0 . 965 × 16 . 5 per cent + 5 . 3 per cent + 

1 . 1 per cent + 19 per cent + 26 . 6 per cent + 7 . 3 per cent = 

8 . 7 per cent . Since angular momentum has to be strictly conserved
or tidal dissipation in the planets we deem it unlikely, if not
mpossible, that tidal dissipation in the planets alone has resulted in 
he current configuration starting from a primordial (3:2) 4 –4:3–3:2 
hain. Testing simulations with dissipation in the outer three planets 
ill not change that outcome because the planets evolve along the 

quilibrium curves. Furthermore, the long-term k 2 / Q values in the 
lanets that we obtain from the tidal evolution with these initial con-
itions are the same as those presented in Fig. 7 within uncertainty. 
The tidal parameters assumed here are may be extreme to keep 

imulation time short, but tests with tidal damping that is an order
f magnitude weaker yields the same outcome due to the angular 
omentum conservation. 

.5 Inward migration of planets b and c 

ne manner in which the inner two planets can lose angular 
omentum is through tidal dissipation in the star. For a constant 
 tidal model the semimajor axis evolution of the planets due to tidal
 c  
issipation in the star is given by (e.g. Murray & Dermott 1999 ) 

2 

13 
a 

13 / 2 
f 

[ 

1 −
(

a 0 

a f 

)13 / 2 
] 

= −3 

(
k 2 

Q 

)
∗

(
G 

M ∗

)1 / 2 

m p R 

5 
∗t ∗, (9) 

here t ∗ is the age of the star, R ∗ is the stellar radius, M ∗ is the
tellar mass, a 0 is the initial semimajor axis, and a f is the current
alue. We can solve this equation for ( k 2 /Q ) ∗ . Starting planet b in
 3:2–3:2 with planets c and d, assuming that the age of the star
 ∗ = 7.6 ± 2.2 Gyr (Burgasser & Mamajek 2017 ), and that the
tellar radius and rotation rate have stayed the same during this
hole time yields ( k 2 /Q ) ∗ = 4 . 2 + 1 . 8 

−1 . 2 × 10 −4 ; for planet c we get
 k 2 /Q ) ∗ = 1 . 8 + 0 . 6 

−0 . 4 × 10 −3 , which is the same order of magnitude
 alue. These v alues are much higher than that expected in solar-
ype stars, for which typically ( k 2 /Q ) ∗< 10 −7 (e.g. Penev et al.
012 ; Ogilvie 2014 ). Even for lower mass stars these high values of
 k 2 /Q ) ∗ are not e xpected, ev en though the tidal dissipation parameter
ecreases before the star reaches the main sequence (Barker 2020 ).
he uncertainties in the calculated stellar tidal parameters are mostly 
ue to the uncertain age of the star. 
Ho we ver, when we add dissipation in the star into our numerical

imulations starting with a (3:2) 4 –4:3–3:2 chain we run into a few
roblems. An example of the evolution is displayed in Fig. 11 . First,
he resonance between planets c and d drags planet d with planet c
s it spirals towards the star. Eventually the pair will decouple and
lanet d will recede from the star because it is outside the co-rotation
adius. Ho we ver, by this time planet b has already spiralled too far
nwards to be consistent with the current configuration. Second, by 
he time the c-d pair decouples and planet c begins to spiral towards
he star, the g-h pair has crossed the 5:3 mean motion resonance due to
he near-conservation of the angular momentum due to the resonant 
hain and that the planets try to evolve along the equilibrium curves.
MNRAS 515, 2373–2385 (2022) 
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The reason that planet b decouples quickly from the system and
pirals inwards is because we were unable to migrate it deep into a
esonance with planet c. 

We when taking into account the reduction in stellar radius with
ime as predicted from isochrones by Baraffe et al. ( 2015 ) we still
btain a high long-term average value of ( k 2 / Q ) ∗ compared to that of
olar-type stars. 

 DISCUSSION  

n the previous sections we argued that it is difficult to trap the planets
nto their current resonant configuration during an episode of gas-
riven migration. Instead, the expected outcome is that the planets
ere caught in a chain of first-order mean-motion resonances (e.g.
rmel et al. 2017 ; Huang & Ormel 2022 ; Teyssandier et al. 2022 ).
rom such a configuration, such as a (3:2) 4 –4:3–3:2 chain, reaching

he current configuration with dissipation in the planets only seems
nlikely. Yet there are a few potential cav eats. F or e xample, changing
he dissipation parameters, or the strength of the dissipation in the
lanets relative to each other will not alter the outcome, because
idal dissipation in the planets conserves angular momentum, and the
urrent configuration has less angular momentum than the (3:2) 4 –
:3–3:2 chain. 
Does the tidal model matter? Probably, but the differences between

everal models are not so great (e.g. Boue & Efroimsky 2019 ).
t the moment we only possess one N -body code with a built-in

idal model, and thus we cannot test other models. Ho we ver, the
lanets evolve along the equilibrium curves and the planetary tides
onserve angular momentum. As such, we argue that changing the
idal model will not change the outcome because all tidal models
onserve angular momentum; the only thing that could change is the
volution time-scale for a specific value of the tidal parameters. 

Do the initial conditions matter? Yes, but starting from a different
esonant configuration means a dif ferent v alue of the total orbital
ngular momentum, which stays constant during the tidal evolution
n the planets alone. Therefore, the precise initial conditions are
nimportant unless they are very close to the current configuration. 

 C O N C L U S I O N S  

he TRAPPIST-1 system is lodged in a five- or possibly even seven-
lanet resonant chain (Luger et al. 2017 ; Agol et al. 2021 ). As a
onsequence of this configuration, the tidal evolution of each planet
annot be calculated individually; rather the system evolves as one
nit. Due to the resonant chain the tidal evolution proceeds along a set
f equilibrium curves in semimajor axis–eccentricity space wherein
he planets separate from each other as their forced eccentricities are
amped by dissipation in the planets while keeping the total angular
omentum conserved. We show that the current 8:5–5:3–(3:2) 2 –4:3–

:2 configuration cannot be reproduced from a primordial (3:2) 4 –
:3–3:2 chain, so that an extra mechanism is required to decouple
lanets b and c from such a configuration. Dissipation in the star is
ne such mechanism, but with the tidal model employed here the
ecoupling of planet c from planet d takes longer than the time it
akes for planet b to reach the star. As such it seems highly unlikely, if
ot impossible, to reproduce the current configuration from a (3:2) 4 –
:3–3:2 chain using tides alone. 
We also show that constraining the k 2 / Q tidal parameter is possible

or some of the planets using both dynamical simulations on the
rbits of the planets and interior structure models. For planet c we
et k 2 / Q = (8 ± 4) × 10 −4 with orbital eccentricity between 0.0013
nd 0.0028. For planet e we get a range for k 2 / Q between 0.007 and
NRAS 515, 2373–2385 (2022) 
.0092, and for planet f between 0.0114 and 0.0138. For planets b
nd d the values from dynamics and interior modelling do not match.
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