252 research outputs found

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future

    Dietary Diversity Was Positively Associated with Psychological Resilience among Elders: A Population-Based Study

    Get PDF
    The association between dietary diversity (DD) and psychological resilience among older people is an underdeveloped area of research. This cross-sectional study explored the associations of DD with psychological resilience among 8571 community-based elderly individuals. The intake frequencies of food groups were collected, and dietary diversity was assessed based on the mean DD score. Psychological resilience was assessed using a simplified resilience score (SRS). Data were analyzed using multiple linear regression and logistic regression models. Poor DD was significantly associated with psychological resilience, with a β (95% CI) of −0.94 (−1.07, −0.81) for the SRS (p \u3c 0.01) and an odds ratio (95% CI) of 1.83 (1.66, 2.01) for low SRS status. The interaction effects of age with DD were observed for the SRS (p \u3c 0.001) and low SRS status (p \u3c 0.001). Based on separate analyses by age group, the association of a low SRS with poor DD was more prominent in the younger elderly than the oldest old, with OR (95% CI) 2.32 (1.96, 2.74) and 1.61 (1.43, 1.82), respectively. Compared with younger participants with good DD, the risk of a low SRS was greater for younger participants with poor DD, the oldest old with good DD, and the oldest old with poor DD, with OR (95% CI) 2.39 (2.02, 2.81), 1.28 (1.09, 1.51), and 2.03 (1.72, 2.39), respectively. The greatest contribution to DD was from a high consumption of vegetables, fruits, and nuts. Our study suggested that poor DD was associated with a low psychological resilience among the Chinese elderly, especially the younger elderly. These findings suggest that augmentation of DD might promote psychological resilience

    Implementing an Interdisciplinary Intergenerational Program Using the Cyber Seniors ® Reverse Mentoring Model Within Higher Education

    Get PDF
    Intergenerational service-learning in higher education positively affects older adults and students, but little is known about the effectiveness of interdisciplinary, reverse mentoring programs that use technology as the medium of bringing generations together. This study describes an intergenerational service-learning program that utilizes reverse mentoring within higher education, the Engaging Generations Program, at a midsized public university in New England where students help older adults learn about technology, and students gain communication and teaching skills. In this article, we outline how the program was implemented, present quantitative data on participation outcomes for students and older adults and qualitative data from older adults, and discuss best practices. Analysis of pre/post surveys found that students\u27 attitudes toward aging improved (p \u3c 0.01) and older adults interest in technology improved (p \u3c 0.05) after program participation. Best practices identified included: multiple meetings with the same pair to deepen friendships, in-person training for student leaders, student responsibility for scheduling, tailoring sessions to each participant, student documentation of meetings, and active involvement by community partners

    Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas

    Get PDF
    Matrix metalloproteinases (MMPs) have been implicated as important factors in gliomas since they may both facilitate invasion into the surrounding brain and participate in neovascularization. We have tested the hypothesis that deregulated expression of gelatinase-A or B, or an activator of gelatinase-A, MT1-MMP, may contribute directly to human gliomas by quantifying the expression of these MMPs in 46 brain tumour specimens and seven control tissues. Quantitative RT-PCR and gelatin zymography showed that gelatinase-A in glioma specimens was higher than in normal tissue; these were significantly elevated in low grade gliomas and remained elevated in GBMs. Gelatinase-B transcript and activity levels were also higher than in normal brain and more strongly correlated with tumour grade. We did not see a close relationship between the levels of expression of MT1-MMP mRNA and amounts of activated gelatinase-A. In situ hybridization localized gelatinase-A and MT1-MMP transcripts to normal neuronal and glia, malignant glioma cells and blood vessels. In contrast, gelatinase-B showed a more restricted pattern of expression; it was strongly expressed in blood vessels at proliferating margins, as well as tumour cells in some cases. These data suggest that gelatinase-A, -B and MT1-MMP are important in the pathophysiology of human gliomas. The primary role of gelatinase-B may lie in remodelling associated with neovascularization, whereas gelatinase-A and MT1-MMP may be involved in both glial invasion and angiogenesis. © 1999 Cancer Research Campaig

    Mapping the human platelet lipidome reveals cytosolic phospholipase A2 as a regulator of mitochondrial bioenergetics during activation

    Get PDF
    Human platelets acutely increase mitochondrial energy generation following stimulation. Herein, a lipidomic circuit was uncovered whereby the substrates for this are exclusively provided by cPLA2, including multiple fatty acids and oxidized species that support energy generation via β-oxidation. This indicates that acute lipid membrane remodeling is required to support energetic demands during platelet activation. Phospholipase activity is linked to energy metabolism, revealing cPLA2 as a central regulator of both lipidomics and energy flux. Using a lipidomic approach (LipidArrays), we also estimated the total number of lipids in resting, thrombin-activated, and aspirinized platelets. Significant diversity between genetically unrelated individuals and a wealth of species was revealed. Resting platelets demonstrated ∼5,600 unique species, with only ∼50% being putatively identified. Thrombin elevated ∼900 lipids >2-fold with 86% newly appearing and 45% inhibited by aspirin supplementation, indicating COX-1 is required for major activation-dependent lipidomic fluxes. Many lipids were structurally identified. With ∼50% of the lipids being absent from databases, a major opportunity for mining lipids relevant to human health and disease is presente

    LipidFinder on LIPID MAPS: peak filtering, MS searching and statistical analysis for lipidomics

    Get PDF
    Summary We present LipidFinder online, hosted on the LIPID MAPS website, as a liquid chromatography/mass spectrometry (LC/MS) workflow comprising peak filtering, MS searching and statistical analysis components, highly customized for interrogating lipidomic data. The online interface of LipidFinder includes several innovations such as comprehensive parameter tuning, a MS search engine employing in-house customized, curated and computationally generated databases and multiple reporting/display options. A set of integrated statistical analysis tools which enable users to identify those features which are significantly-altered under the selected experimental conditions, thereby greatly reducing the complexity of the peaklist prior to MS searching is included. LipidFinder is presented as a highly flexible, extensible user-friendly online workflow which leverages the lipidomics knowledge base and resources of the LIPID MAPS website, long recognized as a leading global lipidomics portal

    The Teacher, the Physician and the Person: How Faculty's Teaching Performance Influences Their Role Modelling

    Get PDF
    OBJECTIVE: Previous studies identified different typologies of role models (as teacher/supervisor, physician and person) and explored which of faculty's characteristics could distinguish good role models. The aim of this study was to explore how and to which extent clinical faculty's teaching performance influences residents' evaluations of faculty's different role modelling statuses, especially across different specialties. METHODS: In a prospective multicenter multispecialty study of faculty's teaching performance, we used web-based questionnaires to gather empirical data from residents. The main outcome measures were the different typologies of role modelling. The predictors were faculty's overall teaching performance and faculty's teaching performance on specific domains of teaching. The data were analyzed using multilevel regression equations. RESULTS: In total 219 (69% response rate) residents filled out 2111 questionnaires about 423 (96% response rate) faculty. Faculty's overall teaching performance influenced all role model typologies (OR: from 8.0 to 166.2). For the specific domains of teaching, overall, all three role model typologies were strongly associated with "professional attitude towards residents" (OR: 3.28 for teacher/supervisor, 2.72 for physician and 7.20 for the person role). Further, the teacher/supervisor role was strongly associated with "feedback" and "learning climate" (OR: 3.23 and 2.70). However, the associations of the specific domains of teaching with faculty's role modelling varied widely across specialties. CONCLUSION: This study suggests that faculty can substantially enhance their role modelling by improving their teaching performance. The amount of influence that the specific domains of teaching have on role modelling differs across specialties

    Interplay between Kinase Domain Autophosphorylation and F-Actin Binding Domain in Regulating Imatinib Sensitivity and Nuclear Import of BCR-ABL

    Get PDF
    BACKGROUND: The constitutively activated BCR-ABL tyrosine kinase of chronic myeloid leukemia (CML) is localized exclusively to the cytoplasm despite the three nuclear localization signals (NLS) in the ABL portion of this fusion protein. The NLS function of BCR-ABL is re-activated by a kinase inhibitor, imatinib, and in a kinase-defective BCR-ABL mutant. The mechanism of this kinase-dependent inhibition of the NLS function is not understood. METHODOLOGY/PRINCIPAL FINDINGS: By examining the subcellular localization of mutant BCR-ABL proteins under conditions of imatinib and/or leptomycin B treatment to inhibit nuclear export, we have found that mutations of three specific tyrosines (Y232, Y253, Y257, according to ABL-1a numbering) in the kinase domain can inhibit the NLS function of kinase-proficient and kinase-defective BCR-ABL. Interestingly, binding of imatinib to the kinase-defective tyrosine-mutant restored the NLS function, suggesting that the kinase domain conformation induced by imatinib-binding is critical to the re-activation of the NLS function. The C-terminal region of ABL contains an F-actin binding domain (FABD). We examined the subcellular localization of several FABD-mutants and found that this domain is also required for the activated kinase to inhibit the NLS function; however, the binding to F-actin per se is not important. Furthermore, we found that some of the C-terminal deletions reduced the kinase sensitivity to imatinib. CONCLUSIONS/SIGNIFICANCE: Results from this study suggest that an autophosphorylation-dependent kinase conformation together with the C-terminal region including the FABD imposes a blockade of the BCR-ABL NLS function. Conversely, conformation of the C-terminal region including the FABD can influence the binding affinity of imatinib for the kinase domain. Elucidating the structural interactions among the kinase domain, the NLS region and the FABD may therefore provide insights on the design of next generation BCR-ABL inhibitors for the treatment of CML
    • …
    corecore