Abstract

Human platelets acutely increase mitochondrial energy generation following stimulation. Herein, a lipidomic circuit was uncovered whereby the substrates for this are exclusively provided by cPLA2, including multiple fatty acids and oxidized species that support energy generation via β-oxidation. This indicates that acute lipid membrane remodeling is required to support energetic demands during platelet activation. Phospholipase activity is linked to energy metabolism, revealing cPLA2 as a central regulator of both lipidomics and energy flux. Using a lipidomic approach (LipidArrays), we also estimated the total number of lipids in resting, thrombin-activated, and aspirinized platelets. Significant diversity between genetically unrelated individuals and a wealth of species was revealed. Resting platelets demonstrated ∼5,600 unique species, with only ∼50% being putatively identified. Thrombin elevated ∼900 lipids >2-fold with 86% newly appearing and 45% inhibited by aspirin supplementation, indicating COX-1 is required for major activation-dependent lipidomic fluxes. Many lipids were structurally identified. With ∼50% of the lipids being absent from databases, a major opportunity for mining lipids relevant to human health and disease is presente

    Similar works