130 research outputs found
Understanding the Clean Interface between Covalent Si and Ionic Al2O3
The atomic and electronic structures of the (001)-Si/(001)-gamma-Al2O3
heterointerface are investigated by first principles total energy calculations
combined with a newly developed "modified basin-hopping" method. It is found
that all interface Si atoms are fourfold coordinated due to the formation of
Si-O and unexpected covalent Si-Al bonds in the new abrupt interface model. And
the interface has perfect electronic properties in that the unpassivated
interface has a large LDA band gap and no gap levels. These results show that
it is possible to have clean semiconductor-oxide interfaces
Entropic effects on the Size Evolution of Cluster Structure
We show that the vibrational entropy can play a crucial role in determining
the equilibrium structure of clusters by constructing structural phase diagrams
showing how the structure depends upon both size and temperature. These phase
diagrams are obtained for example rare gas and metal clusters.Comment: 5 pages, 3 figure
Radiative open charm decay of the Y(3940), Z(3930), X(4160) resonances
We determine the radiative decay amplitudes for decay into and , or and of some of the charmonium like
states classified as X,Y,Z resonances, plus some other hidden charm states
which are dynamically generated from the interaction of vector mesons with
charm. The mass distributions as a function of the or
invariant mass show a peculiar behavior as a consequence of
the nature of these states. The experimental search of these
magnitudes can shed light on the nature of these states.Comment: 18 pages, 9 figure
Polytetrahedral Clusters
By studying the structures of clusters bound by a model potential that
favours polytetrahedral order, we find a previously unknown series of `magic
numbers' (i.e. sizes of special stability) whose polytetrahedral structures are
characterized by disclination networks that are analogous to hydrocarbons.Comment: 4 pages, 4 figure
Nanoscale study of the as-grown hydrogenated amorphous silicon surface
A scanning tunneling microscope has been used to study the topography of the as-grown surface of device-quality, intrinsic, hydrogenated amorphous silicon deposited by rf discharge from silane. The substrates were atomically flat, oxide-free, single-crystal silicon or gallium arsenide. No evidence for island formation or nanoscale irregularities was seen in studies of 100-Å-thick films on either silicon or gallium arsenide. The topography of 1000- and 4000-Å-thick films has much variation; many regions can be characterized as rolling hills, but atomically flat areas have also been observed nearby. Generally, it appears that surface diffusion plays a role in smoothing the film topography. In most regions, the observed slopes were 10% or less from horizontal, but some steep-sided valleys, indicating incipient voids, were observed. The effect of the finite size of the scanning tunneling microscope probe tip is considered; this has an effect on the observed images in some cases
Effect of hydrogen on ground state structures of small silicon clusters
We present results for ground state structures of small SiH (2 \leq
\emph{n} \leq 10) clusters using the Car-Parrinello molecular dynamics. In
particular, we focus on how the addition of a hydrogen atom affects the ground
state geometry, total energy and the first excited electronic level gap of an
Si cluster. We discuss the nature of bonding of hydrogen in these
clusters. We find that hydrogen bonds with two silicon atoms only in SiH,
SiH and SiH clusters, while in other clusters (i.e. SiH,
SiH, SiH, SiH, SiH and SiH) hydrogen is bonded
to only one silicon atom. Also in the case of a compact and closed silicon
cluster hydrogen bonds to the cluster from outside. We find that the first
excited electronic level gap of Si and SiH fluctuates as a function
of size and this may provide a first principles basis for the short-range
potential fluctuations in hydrogenated amorphous silicon. Our results show that
the addition of a single hydrogen can cause large changes in the electronic
structure of a silicon cluster, though the geometry is not much affected. Our
calculation of the lowest energy fragmentation products of SiH clusters
shows that hydrogen is easily removed from SiH clusters.Comment: one latex file named script.tex including table and figure caption.
Six postscript figure files. figure_1a.ps and figure_1b.ps are files
representing Fig. 1 in the main tex
Recommended from our members
Understanding the Potential and Limitations of Dilute Nitride Alloys for Solar Cells
Dilute nitride alloys provide a powerful tool for engineering the band gap and lattice constant of III-V alloys. However, nitrogen degrades the performance of GaAs solar cells. This project seeks to understand and demonstrate the limits of performance of GaInNAs alloys by (a) correlating deep-level transient spectroscopy (DLTS) data with device performance and (b) using molecular beam epitaxy (MBE) to reduce background impurity concentrations
C60: the first one-component gel?
Until now, gels have been formed of multicomponent soft matter systems,
consisting of a solvent and one or more macromolecular or colloidal species.
Here we show that, for sufficient quench rates, the Girifalco model of C60 can
form gels which we identify by their slow dynamics and long-lived network
structure. These gels are stable at room temperature, at least on the
simulation timescale up to 100 ns. At moderate temperatures around 1000 K,
below the bulk glass transition temperature, C60 exhibits crystallisation and
phase separation proceeds without the dynamical arrest associated with
gelation, in contrast to many colloidal systems.Comment: Accepted by J. Phys. Chem. C. special issue 'Clusters in complex
fluids
Mesons and baryons in a soft-wall holographic approach
We discuss a holographic soft-wall model developed for the description of
mesons and baryons with adjustable quantum numbers n, J, L, S. This approach is
based on an action which describes hadrons with broken conformal invariance and
which incorporates confinement through the presence of a background dilaton
field.Comment: 6 pages, Presented by Valery E. Lyubovitskij at LIGHTCONE 2011, 23 -
27 May, 2011, Dalla
- …