46 research outputs found

    High blood pressure and associated risk factors as indicator of preclinical hypertension in rural West Africa: A focus on children and adolescents in The Gambia.

    Get PDF
    Hypertension is fast becoming a major public health problem across sub-Saharan Africa. We sought to determine the prevalence of high blood pressure (BP) and associated risk factors as indicator of preclinical hypertension in a rural Gambian population.We analyzed data on 6160 healthy Gambians cross-sectionally. Attention was given to 5 to <18-year olds (N = 3637), as data from sub-Saharan Africa on this young age group are scarce. High BP was defined as systolic blood pressure (SBP) above the 95th percentile for age-sex specific height z scores in <18-year olds employing population-specific reference values. Standard high BP categories were applied to ≄18-year olds.In <18-year olds, the multivariable analysis gave an adjusted high BP prevalence ratio of 0.95 (95% confidence interval [CI] 0.92-0.98; P = 0.002) for age and 1.13 (95% CI 1.06-1.19; P < 0.0001) for weight-for-height z score (zWT-HT); sex and hemoglobin were not shown to affect high BP. In adults age 1.05 (95% CI 1.04-1.05; P < 0.0001), body mass index z score 1.28 (95% CI 1.16-1.40; P < 0.0001), hemoglobin 0.90 (95% CI 0.85-0.96; P < 0.0001) and high fasting glucose 2.60 (95% CI 2.02-3.36; P < 0.0001, though the number was very low) were confirmed as risk factors for high BP prevalence; sex was not associated.The reported high BP prevalence and associated risk factors in adults are comparable to other studies conducted in the region. The observed high BP prevalence of 8.2% (95% CI 7.4-9.2) in our generally lean young Gambians (<18 years) is alarming, given that high BP tracks from childhood to adulthood. Hence there is an urgent need for further investigation into risk factors of pediatric high BP/hypertension even in rural African settings

    Progressive influence of body mass index-associated genetic markers in rural Gambians.

    Get PDF
    BACKGROUND: In populations of European ancestry, the genetic contribution to body mass index (BMI) increases with age during childhood but then declines during adulthood, possibly due to the cumulative effects of environmental factors. How the effects of genetic factors on BMI change with age in other populations is unknown. SUBJECTS AND METHODS: In a rural Gambian population (N=2535), we used a combined allele risk score, comprising genotypes at 28 'Caucasian adult BMI-associated' single nucleotide polymorphisms (SNPs), as a marker of the genetic influence on body composition, and related this to internally-standardised z-scores for birthweight (zBW), weight-for-height (zWT-HT), weight-for-age (zWT), height-for-age (zHT), and zBMI cross-sectionally and longitudinally. RESULTS: Cross-sectionally, the genetic score was positively associated with adult zWT (0.018±0.009 per allele, p=0.034, N=1426) and zWT-HT (0.025±0.009, p=0.006), but not with size at birth or childhood zWT-HT (0.008±0.005, p=0.11, N=2211). The effect of the genetic score on zWT-HT strengthened linearly with age from birth through to late adulthood (age interaction term: 0.0083 z-scores/allele/year; 95% CI 0.0048 to 0.0118, p=0.0000032). CONCLUSIONS: Genetic variants for obesity in populations of European ancestry have direct relevance to bodyweight in nutritionally deprived African settings. In such settings, genetic obesity susceptibility appears to regulate change in weight status throughout the life course, which provides insight into its potential physiological role

    CD4 intragenic SNPs associate with HIV-2 plasma viral load and CD4 count in a community-based study from Guinea-Bissau, West Africa.

    Get PDF
    OBJECTIVES: The human genetics of HIV-2 infection and disease progression is understudied. Therefore, we studied the effect of variation in 2 genes that encode products critical to HIV pathogenesis and disease progression: CD4 and CD209. DESIGN: This cross-sectional study consisted of 143 HIV-2, 30 HIV-1 + HIV-2 and 29 HIV-1-infected subjects and 194 uninfected controls recruited from rural Guinea-Bissau. METHODS: We genotyped 14 CD4 and 4 CD209 single nucleotide polymorphisms (SNPs) that were tested for association with HIV infection, HIV-2 plasma viral load (high vs. low), and CD4 T-cell count (high vs. low). RESULTS: The most significant association was between a CD4 haplotype rs11575097-rs10849523 and high viral load [odds ratio (OR): = 2.37, 95% confidence interval (CI): 1.35 to 4.19, P = 0.001, corrected for multiple testing], suggesting increased genetic susceptibility to HIV-2 disease progression for individuals carrying the high-risk haplotype. Significant associations were also observed at a CD4 SNP (rs2255301) with HIV-2 infection (OR: = 2.36, 95% CI: 1.19 to 4.65, P = 0.01) and any HIV infection (OR: = 2.50, 95% CI: 1.34 to 4.69, P = 0.004). CONCLUSIONS: Our results support a role of CD4 polymorphisms in HIV-2 infection, in agreement with recent data showing that CD4 gene variants increase risk to HIV-1 in Kenyan female sex workers. These findings indicate at least some commonality in HIV-1 and HIV-2 susceptibility

    Rapid assessment of tetanus vaccine-induced immunity in Bangladesh and the Gambia.

    Get PDF
    We have developed recombinant fragment C based rapid point of care dipstick devices to assess tetanus immunization status using plasma or whole blood. The devices demonstrated specificity of 0.90 and sensitivity of 0.90 (whole blood)/0.94 (plasma) at field sites in Bangladesh and The Gambia when compared to a commercial ELISA with the immune cut-off titer set as ≄0.1IU/mL

    Widespread seasonal gene expression reveals annual differences in human immunity and physiology.

    Get PDF
    Seasonal variations are rarely considered a contributing component to human tissue function or health, although many diseases and physiological process display annual periodicities. Here we find more than 4,000 protein-coding mRNAs in white blood cells and adipose tissue to have seasonal expression profiles, with inverted patterns observed between Europe and Oceania. We also find the cellular composition of blood to vary by season, and these changes, which differ between the United Kingdom and The Gambia, could explain the gene expression periodicity. With regards to tissue function, the immune system has a profound pro-inflammatory transcriptomic profile during European winter, with increased levels of soluble IL-6 receptor and C-reactive protein, risk biomarkers for cardiovascular, psychiatric and autoimmune diseases that have peak incidences in winter. Circannual rhythms thus require further exploration as contributors to various aspects of human physiology and disease.The Gambian study providing data for analysis was supported by core funding MC-A760-5QX00 to the International Nutrition Group by the UK Medical Research Council (MRC) and the UK Department for the International Development (DFID) under the MRC/DFID Concordat agreement. This work was supported by the JDRF UK Centre for Diabetes-Genes, Autoimmunity and Prevention (D-GAP; 4-2007-1003), the JDRF (9-2011-253), the Wellcome Trust (WT061858/091157), the National Institute for Health Research Cambridge Biomedical Research Centre (CBRC) and the Medical Research Council (MRC) Cusrow Wadia Fund. The research leading to these results has received funding from the European Union’s 7th Framework Programme (FP7/2007–2013) under grant agreement no.241447 (NAIMIT). The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (WT100140). X.C.D. was a University of Cambridge/Wellcome Trust Infection and Immunity PhD student. R.C.F. is funded by a JDRF post-doctoral fellowship (3-2011-374). C.W. and H.G are funded by the Wellcome Trust (WT089989). The BABYDIET study was supported by grants from the Deutsche Forschungsgemeinschaft (DFG ZI-310/14-1 to-4), the JDRF (JDRF 17-2012-16 and 1-2006-665) and the German Center for Diabetes Research (DZD e.V.). E.B. is supported by the DFG Research Center and Cluster of Excellence—Center for Regenerative Therapies Dresden (FZ 111).This is the final published version. It first appeared at http://www.nature.com/ncomms/2015/150512/ncomms8000/full/ncomms8000.html

    Evidence for negative selection of gene variants that increase dependence on dietary choline in a Gambian cohort

    Get PDF
    Choline is an essential nutrient, and the amount needed in the diet is modulated by several factors. Given geographical differences in dietary choline intake and disparate frequencies of single-nucleotide polymorphisms (SNPs) in choline metabolism genes between ethnic groups, we tested the hypothesis that 3 SNPs that increase dependence on dietary choline would be under negative selection pressure in settings where choline intake is low: choline dehydrogenase (CHDH) rs12676, methylenetetrahydrofolate reductase 1 (MTHFD1) rs2236225, and phosphatidylethanolamine-N-methyltransferase (PEMT) rs12325817. Evidence of negative selection was assessed in 2 populations: one in The Gambia, West Africa, where there is historic evidence of a choline-poor diet, and the other in the United States, with a comparatively choline-rich diet. We used 2 independent methods, and confirmation of our hypothesis was sought via a comparison with SNP data from the Maasai, an East African population with a genetic background similar to that of Gambians but with a traditional diet that is higher in choline. Our results show that frequencies of SNPs known to increase dependence on dietary choline are significantly reduced in the low-choline setting of The Gambia. Our findings suggest that adequate intake levels of choline may have to be reevaluated in different ethnic groups and highlight a possible approach for identifying novel functional SNPs under the influence of dietary selective pressure
    corecore