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ABSTRACT
Background In populations of European ancestry,
the genetic contribution to body mass index (BMI)
increases with age during childhood but then declines
during adulthood, possibly due to the cumulative effects
of environmental factors. How the effects of genetic
factors on BMI change with age in other populations is
unknown.
Subjects and methods In a rural Gambian
population (N=2535), we used a combined allele risk
score, comprising genotypes at 28 ‘Caucasian adult
BMI-associated’ single nucleotide polymorphisms (SNPs),
as a marker of the genetic influence on body
composition, and related this to internally-standardised
z-scores for birthweight (zBW), weight-for-height
(zWT-HT), weight-for-age (zWT), height-for-age (zHT),
and zBMI cross-sectionally and longitudinally.
Results Cross-sectionally, the genetic score was
positively associated with adult zWT (0.018±0.009 per
allele, p=0.034, N=1426) and zWT-HT (0.025±0.009,
p=0.006), but not with size at birth or childhood zWT-
HT (0.008±0.005, p=0.11, N=2211). The effect of the
genetic score on zWT-HT strengthened linearly with age
from birth through to late adulthood (age interaction
term: 0.0083 z-scores/allele/year; 95% CI 0.0048 to
0.0118, p=0.0000032).
Conclusions Genetic variants for obesity in
populations of European ancestry have direct relevance
to bodyweight in nutritionally deprived African settings.
In such settings, genetic obesity susceptibility appears to
regulate change in weight status throughout the life
course, which provides insight into its potential
physiological role.

INTRODUCTION
Genome-wide association studies (GWAS) in popu-
lations of European ancestry have identified more
than 50 loci that are robustly associated with adult
body mass index (BMI). The study by Zhu et al1

gives a comprehensive summary of recent GWAS
on obesity-related traits conducted in different
populations. Far fewer data are available regarding
populations of different ethnic backgrounds, espe-
cially those living in nutritionally-deprived settings.
Most studies in Asian populations have replicated
BMI ‘risk’ variants, though lower effect sizes have
been reported.1 2 Studies in populations of African
ancestry have provided inconsistent results regard-
ing the contribution of genetic variation to BMI
and obesity.3–5 In a recent meta-analysis, Monda
et al6 demonstrated that out of 36 predominantly
‘Caucasian BMI loci’, five individually reached

genome-wide significance in African Americans and
two novel loci were identified through their ana-
lysis. Such discrepancies in findings from different
studies are thought to be due, in part, to variation
in the genetic architecture of different populations.
Given that populations of African origin are charac-
terised by greater genetic heterogeneity (manifested
in lower linkage disequilibrium (LD) and smaller
haplotype blocks), difficulties can arise in replicat-
ing signals identified in populations of European
ancestry. On the other hand, this may lend an
advantage for fine-mapping putative causal vari-
ation and the identification of novel loci.7 8 For
example, a recent study by Gong and colleagues
was able to narrow the signal to a substantially
smaller number of associated single nucleotide
polymorphisms (SNPs) in several BMI-related loci
in African Americans.9

Much data on the genetic basis of BMI and
obesity published to date has concentrated on adult
BMI; however, these variants have also been shown
to influence weight gain and obesity risk in child-
hood, but not birthweight (BW).1 10–13 Such
studies have reported that the effect size of adult
BMI variants on bodyweight increases during child-
hood and plateaus during adolescence and adult-
hood. Lack of associations with adult weight gain
could reflect developmental stage-specific effects of
genetic obesity mechanisms or the relatively greater
influence of accumulated environmental factors.
Given the small effect sizes seen for individual

markers, many studies have analysed combined
allele scores in order to evaluate more effectively
the cumulative influence of adult obesity suscepti-
bility on childhood growth and other traits.10 11 13–

17 Employing a composite score of risk alleles max-
imises statistical power, reduces the pitfall of mul-
tiple testing, and widens the generalisable nature of
the findings.18

Healthy growth is particularly important in chil-
dren in the world’s poorest nations where malnutri-
tion and infection pose a double burden. In
sub-Saharan Africa growth faltering remains a major
public health issue.19 20 Understanding the nutri-
tional and genetic basis of growth failure to identify
critical windows of opportunity for interventions is
thus essential. We took advantage of our well-
characterised Gambian core-village population, with
detailed anthropometric measures in particular
during early infancy, to assess the cumulative effect of
‘Caucasian adult BMI-associated’ SNPs on anthropo-
metric outcomes in this rural African setting. We
adapted a set of 32 SNPs described by Speliotes and
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colleagues,21 replacing markers that are located in different haplo-
type blocks in Europeans and Africans with surrogate SNPs that
are in high LD with the original SNPs. This was done in order to
increase the likelihood of tagging the associated variant in our
Gambian population. We interrogated our data both cross-
sectionally and longitudinally, focusing on early growth (0–2 year)
and growth to adulthood (2–20 year), and further assessed the
predicted increase in z-score for weight-for-height (zWT-HT) per
risk allele score as a function of age.

METHODS
Study sample
Individuals resident within the three ‘core villages’ around the
Medical Research Council (MRC) field station in Keneba
(West-Kiang, The Gambia) were considered eligible for the
present study. An antenatal/maternity programme has been
running in these villages (Keneba, Kantong Kunda, and
Manduar) since 1974. Records and census data going back to
the 1950s is available through the Keneba database maintained
by the MRC International Nutrition Group. This includes
demographic data on ∼13 300 individuals and was used to
establishment pedigree relationships. This population comprises
socially homogenous, rural subsistence farmers, the majority of
whom are Mandinka (self-reported ethnicity). The adult age
lower cut-off was defined as 20 years.22 The attrition of avail-
able data at each stage of the study is summarised in table 1.

This study was approved by the joint Gambia Government/
MRC Ethics Committee (SCC/ECL2009.61) and all subjects
and/or legal guardians provided written, informed consent.

Growth measures
Anthropometric measures comprised z-scores for birthweight
(zBW), zWT-HT, weight-for-age (zWT), height-for-age (zHT), as

well as body mass index (zBMI). A total of >43 000 weight and
length/height measurements were available for analysis. All mea-
sures were taken by trained midwives or field staff with regularly
calibrated equipment. BW was recorded to the nearest 10 g
within 72 h of birth. Weight was recorded to the nearest 10 g
and height to the nearest 0.1 cm. Z-score calculations are
described under the statistical analyses section below.

Genetic analyses
DNA was extracted from venous blood samples collected in
2002–2003 using a standard salting-out method according to
the protocol of the DNA Bank at the MRC Laboratories in The
Gambia.23

We designed a single 30-plex assay analogous to the set of 32
‘Caucasian adult BMI-associated’ SNPs reported by Speliotes
et al.21 If the original SNP was shown to locate in a different
haplotype block based on HapMap Yoruba (YRI) compared to
European (CEU) data, an alternative marker was selected using
a cut-off of r2 >0.8 with the original SNP. Similarly, because
some SNPs had a minor allele frequency (MAF) <1% in YRI,
an alternative and/or additional marker was selected as
described and genotyped. For three of the original SNPs no suit-
able surrogate SNP was identified. The total number of SNPs
screened was 30, two of which were monomorphic in
Gambians; see online supplementary table S2 for details.
Genotyping was performed at the MRC Epidemiology Unit,
Cambridge on the Sequenom iPLEX platform (Sequenom, San
Diego, California, USA) as previously described.10

Hardy-Weinberg equilibrium (HWE) was tested based on one
randomly selected representative per sibship (defined as having
the same mother).

The BMI-increasing allele for each SNP is indicated in online
supplementary table S2. One variant (rs4836133 in ZNF608) is
tri-allelic and was recoded as bi-allelic according to the number
of BMI-increasing alleles. For individuals with missing geno-
types at only five or fewer SNPs, data were imputed using the
mean number of BMI-increasing alleles for that SNP (ie, twice
the allele frequency). A combined genetic score was then calcu-
lated for each individual, comprising the cumulative number of
BMI-increasing alleles across all valid genotypes.

Statistical analyses
Because the study covered a wide range of ages, we calculated
internally calibrated z-scores for all anthropometric measures.
We estimated several growth parameters for each individual:
zBW at birth; zWT and zHT at 2 years (nearest measurement
>1.5 and <2.5 years); and zWT, zHTand zBMI in adults (using
first measurement at adult age (>20 years)). For zWT-HT in
children (≤20 year olds), and in those >20 years of age, we
used all available data points, taking into account
between-individual and between-family variation in mixed effect
models (see below). BMI was calculated for adults only as
weight/height2 (kg/m2; see online supplementary table S1).
Since BMI is strongly age-dependent below the age of 18 years,
we deemed internally calibrated zWT-HT as the best suited
measure of body composition in our population covering a wide
age range from birth to older adults.

Internal z-scores and growth measures were calculated as pre-
viously described.24 Briefly, zWT, zHTand zBMI were calculated
for particular age-sex groups using the formula z-score=
(x-mean)/SD, where x is an individual’s measurement and mean
and SD are the sample mean and standard deviation of the mea-
surements within the age-sex group concerned. In the case of
WT and HT the measurements were logged first in order to

Table 1 Cumulative effect of 28 risk alleles on anthropometric
measures

Age Outcome N Coefficient* 95% CI
p
Value

Cross-sectional analysis
Birth zBW 1237 0.008 −0.011 to 0.026 0.422
2 years† zWT 1820 0.012 −0.003 to 0.027 0.134
2 years† zHT 1820 0.009 −0.006 to 0.025 0.246
≤20 years zWT-HT 2211 0.008 −0.002 to 0.017 0.108
Adults‡ zWT 1426 0.018 0.001 to 0.035 0.034
Adults‡ zHT 1426 0.004 −0.012 to 0.021 0.609
>20 years zWT-HT 1426 0.025 0.007 to 0.044 0.006
Adults‡ zBMI 1426 0.016 −0.001 to0.034 0.060

Longitudinal analysis
0–2 years WT

growth
1248 0.001 −0.009 to 0.012 0.810

0–2 years LG
growth

1214 0.005 −0.000 to 0.011 0.064

2–20 years zWT
change

872 0.010 −0.016 to 0.035 0.455

2–20 years zHT
change

872 0.006 −0.020 to 0.032 0.666

*Coefficients indicate change in z-scores per allele (cross-sectional) or change in
z-scores per allele per year (longitudinal).
†Nearest observation to 2 years of age (>1.5 and <2.5 years).
‡First measurement at adult age (>20 years).
BMI, body mass index; BW, birthweight; HT, height; LG, length; WT, weight; zBMI,
BMI z-score; zBW, BW z-score; zHT, height-for-age z-score; zWT, weight-for-age
z-score; zWT-HT, weight-for-height z-score.
Results significant at the p<0.05 level are indicated in bold.
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reduce skewness. The same formula was used for zWT-HT
except that this variable had to be calculated for measurements
at all ages so the mean and SD were calculated as (sex-specific)
functions of age. These were derived from regression models
fitting log(WT) to polynomials of age and HT and the squared
residuals to polynomials of age.

Longitudinal growth analyses were separated into two age
periods, between 0–2 years, and between 2–20 years. Infant
growth was derived for those individuals providing at least five
measurements, with at least one in each of the first and second
years of life and where growth per year could be estimated with
reasonable accuracy (defined as SE of change in z-score per year
<0.4). The internal z-score for each measurement was regressed
on age separately for each child. The birth to 2 year growth
parameters are the coefficient for age from these regression
models. For weight and height growth between the ages of
2–20 years we again calculated internal z-scores (both zWT and
zHT) for the anthropometry measurement taken closest to
2 years of age, provided it lay between 1.5 and 2.5 years, and
for the first adult measurement (above 20 years). The 2–
20 years growth parameter is given by the difference between
these two z-scores.

We related the combined genotype score as a linear variable
to zWT, zHT and zBMI using random effects regression (gener-
alised least squares) with the higher level of variance given by
clusters defined by a mother and her offspring (whether by the
same or different fathers). In each analysis we controlled for
village of residence and year of birth (to adjust for possible
secular changes) by fitting these respectively as categorical and
continuous linear terms in the model. For zWT-HT, a similar
analysis was performed using a multilevel mixed effects model
fitting three levels of variance: between family, between indivi-
duals within family, and between observations on the same indi-
vidual. To estimate how the effect of the genetic score on
zWT-HT changed as a function of age, we added to this model
terms for the interactions between the genetic score and cubic
polynomials for age (fitted as three orthogonal polynomials).

RESULTS
Study population
Demographics and summary statistics of the study population
are shown in online supplementary table S1.

The sex distribution varied slightly by age group, but ranged
between 53–69% females (data not shown). In the current
sample, 114/2535 were of unknown ethnicity or non-Mandinka
(self-reported ethnicity, see online supplementary table S1). As
>95% of individuals were Mandinka, we did not stratify the
study cohort by ethnic groups. One of each of nine twin pairs
was randomly excluded.

The data analysed were derived from ∼43 250 measurements
for weight and length/height in 2535 individuals genotyped in
this study, with each individual contributing on average 17
observations (range 1–58), with routinely up to 12 measure-
ments in the first 2 years of life and less frequent measurement
thereafter. For 19 individuals either weight or height informa-
tion was missing. Mean (±SD) BW was 2.94±0.41 kg and
mean adult BMI was 21.18±3.01 kg/m2. Mean (±SD) adult
WT and HT were 58.7±9.0 kg and 1.70±0.069 m for males,
and 54.6±9.2 kg and 1.59±0.061 m for females.

Genetic data
Call rates for all 30 SNPs were 95% or above. Two SNPs
(rs10938397 in GNPDA2, and rs13107325 in SLC39A8) were
monomorphic in our Gambian sample and were therefore

excluded from the analyses. The remaining 28 SNPs passed HWE
criteria (p<0.0019, representing p=0.05 corrected for 28 tests).

Data on 74 individuals were excluded from analyses due to
missing genotype data on six or more (>20%) of the 28 SNPs.
In the remaining sample of 2516 individuals, missing genotypes
were imputed using the mean number of BMI-increasing alleles
for each variant; the missingness ranged between 0.0–2.9%
across the 28 markers included in the analysis (see online sup-
plementary table S2).

Associations with body size and growth
In the cross-sectional analysis, the combined allele score across all
28 risk alleles was positively associated with adult zWT (0.018
SDs per allele, CI 95% 0.001 to 0.035; p=0.034) and zWT-HT
(0.025, CI 95% 0.007 to 0.044; p=0.006), while a trend towards
association were seen for zBMI (p=0.060) (table 1 and figure 1),
but not for adult zHT. No genetic score association was seen in the
cross-sectional analysis for size at birth, at 2 years, or in individuals
≤20 years of age or for longitudinal changes in zWT or zHT
between 0–2 years or between 2–20 years (table 1).

We further assessed the interaction between age and the
genetic score on zWT-HT. We estimated the increase in
zWT-HT per allele as a cubic function of age (figure 2); this
showed that the effect of the genetic score on zWT-HT
increased linearly with age (linear age-interaction term: 0.0083
z-scores/allele/year; CI 95% 0.0048 to 0.0118, p=0.0000032;
quadratic and cubic age-interaction terms were not significant).

DISCUSSION
This study showed that common genetic variation that is
robustly associated with obesity risk in populations of European
(and Asian) origin also affects the adult weight status (WT-HT)
of lean Africans (rural Gambians) living in a nutritionally
deprived environment. A cumulative risk score of 28 ‘BMI’ risk
alleles was employed to maximise statistical power, to reduce
multiple testing, and to represent a generic index of genetic
obesity susceptibility.10 11 13–18 We acknowledge that a compos-
ite risk score does not allow any inference regarding the possible
differential contribution of individual SNPs. However, we previ-
ously investigated 16 FTO SNPs in our study population and
did not observe individual associations with body mass.25

Figure 1 Cumulative risk allele effect on adult z-score for
weight-for-height (zWT-HT). Distribution of the genetic predisposition
score and cumulative effects of the risk alleles from the 28 variants on
adult zWT-HT (N=1426). Mean (±SE) values for zWT-HT is also shown.
For the purpose of these graphs no correction for village or year of
birth was applied.
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Compared to similar data employing cumulative risk scores,
the effect sizes in our study (ie, 0.018 to 0.025 of a z-score per
risk allele on adult weight and WT-HT) amounted to approxi-
mately one third to one half of that seen in populations of
European ancestry and living in affluent environmental condi-
tions using a score of 32 SNPs (0.17 kg/m2 per allele).21 Of the
recent studies including African American samples, some
support reduced effect sizes,18 while others report comparable
results to those seen in populations of European origin.22

However, the directional consistency across all these different
populations indicates evidence for shared genetic influences on
BMI and other anthropometric traits across the whole spectrum
of ethnicity and nutritional availability.

Recent publications in non-African origin populations suggest
that the genetic contribution to BMI strengthens during child-
hood and then gradually weakens with age in adults.15 17 24

However, others have not seen such changes in adiposity-related
traits from adolescence to adulthood.26 Furthermore, a recent
study suggests that the influence of susceptibility variants has
increased during the obesity epidemic, at least in settings where
changes in secular trends occur, for example, due to increases in
nutritional availability.13 Despite significant measures to improve
health outcomes, for example, via vaccination programmes, the
prevalence of childhood growth deficits remains a major public
health problem in sub-Saharan Africa (eg, stunting is generally
stagnant at about 40% though it has reduced to 20% in our
population).19 27 Studies across different low- and
middle-income countries have shown that in these regions chil-
dren are born small and growth faltering, especially in length/
height, starts soon after birth and continues for the first 2 years
of life. Such analyses have been important in developing the
concept that the time between conception and 2 years of age
represents an optimal ‘window of opportunity’ within which
growth-promoting nutritional interventions should be focused—
the first 1000 days.28 We thus stratified our data into two
groups, representing changes in the first 2 years of age (0–
2 years) and from 2 to 20 years. This analysis did not reveal an
effect of cumulative risk alleles on changes in zWT or zHT
change between the ages of 2 and 20 years, or in length or

weight growth between the ages of 0 and 2 years (although
there was a trend to a positive association with length growth in
children <2 years old). Further analysis revealed a pronounced
interaction with age, with significant association seen between
genetic risk score and zWT-HT in adults (>20 years), but not in
children. Furthermore, while fitting a cubic function to capture
the age effect and its interaction with genotype allows for a rea-
sonable degree of flexibility in the shape of the relationship,
there was surprisingly clear evidence that the effects of genetic
susceptibility accumulate linearly with age (figure 2).

Several reasons are likely to contribute to these differences
between our findings and similar genetic studies across different
populations. We studied lean Gambians; among the adults within
our population (N=1426), only 4.6% are overweight and 0.8%
are obese when applying standard BMI cut-off of 25–30 and >30,
respectively. Our population represents a lower and narrower
range in weight status compared to populations of European
ancestry living in affluent conditions, which could contribute to
lower effects sizes compared to populations with wider ranges of
measures and with phenotypes at the (extreme) upper end of the
obesity scale. Furthermore, the nutritionally deprived rural
Gambian environment may have directly reduced the influence of
BMI-increasing genetic variants; even in other nutritionally richer
settings, stronger genetic effect sizes are observed within sub-
groups who lead more obesogenic lifestyles29 and in settings with
increasing nutritional availability, leading to secular trends in the
obesity epidemic.13 Furthermore, our analysis focused on poly-
morphisms robustly associated with BMI in populations of
European origin. Such SNPs may not be ideal to assess the trans-
ferability of association signals to populations of different ethnic
origin, given that ‘true’ causal variants may be located elsewhere.8

Difficulties in replicating signals can be due to the ‘lead’ poly-
morphism(s) identified in Europeans tagging smaller regions in
individuals of African origin.3–5 9 While transferability of ‘obesity-
susceptibility’ loci to Asians is generally good, there is less consist-
ency of findings with respect to populations of African ancestry.26

Interestingly, Domingue et al22 reported that alternate genetic risk
scores derived from studies of populations of African ancestry per-
formed similarly to ‘European risk scores’ in predicting BMI and
obesity in African American young adults.

In summary, there appears to be evidence for shared genetic
influences on weight status across diverse populations, including
our sample of rural Gambians. Weaker effect sizes observed
here, particularly in childhood, compared to those reported in
populations of European origin could reflect differences in
genetic architecture, age groups studied, as well as lower and
more variable nutrition levels and variability. Our findings
support a role for genetic obesity susceptibility on weight status
across the whole spectrum of nutritional availability.29 The pro-
gressive increase in genetic effect on weight status in our popu-
lation suggests that the underlying obesity-related mechanisms
are not inherently limited by age or developmental stage. A pos-
sible explanation for the discordance between our findings and
previous reports15 17 24 is that the apparent plateau in these
genetic effects seen in Europeans at late adolescence/early adult-
hood might reflect reduced sensitivity to energy homeostatic
mechanisms associated with attainment of adequate/high weight
status.5 Larger multiethnic longitudinal studies will need to be
conducted to evaluate in detail the genetic contribution espe-
cially to early growth faltering. This is particularly important in
the context of the now well-accepted paradigm for the
‘Developmental Origins of Health and Disease’ (DOHaD),
which states that optimising growth during early life is beneficial
to life-long health.

Figure 2 Variation in genotypic effect on z-score for
weight-for-height (zWT-HT) with age. The predicted increase in zWT-HT
per allele as a function of age is plotted, indicating that the effect of
the genetic predisposition score increases throughout life. The data
comprise 43 235 measurements in 2513 individuals. Thick
line=predicted genotypic effect on zWT-HT with age predicted from
models with a cubic function of age; thin lines=95%CI.
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