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ABSTRACT Choline is an essential nutrient, and the
amount needed in the diet is modulated by several fac-
tors. Given geographical differences in dietary choline
intake and disparate frequencies of single-nucleotide
polymorphisms (SNPs) in choline metabolism genes
between ethnic groups, we tested the hypothesis that 3
SNPs that increase dependence on dietary choline
would be under negative selection pressure in settings
where choline intake is low: choline dehydrogenase
(CHDH) rs12676, methylenetetrahydrofolate reductase 1
(MTHFD1) rs2236225, and phosphatidylethanolamine-
N-methyltransferase (PEMT) rs12325817. Evidence of
negative selectionwasassessed in2populations: one inThe
Gambia, West Africa, where there is historic evidence of
a choline-poor diet, and the other in theUnited States, with
a comparatively choline-rich diet. We used 2 independent
methods, and confirmation of our hypothesis was sought
via a comparison with SNP data from the Maasai, an East
African population with a genetic background similar to
that ofGambians but with a traditional diet that is higher in
choline.Our results show that frequencies of SNPs known
to increase dependence on dietary choline are significantly
reduced in the low-choline setting of The Gambia. Our
findings suggest that adequate intake levels of cholinemay
have to be reevaluated in different ethnic groups and
highlight a possible approach for identifying novel func-
tional SNPs under the influence of dietary selective pres-
sure.—Silver,M. J., Corbin,K.D.,Hellenthal,G., daCosta,
K.-A., Dominguez-Salas, P., Moore, S. E., Owen, J., Prentice,
A. M., Hennig, B. J., Zeisel, S. H. Evidence for negative se-
lection of gene variants that increase dependence on dietary

choline in aGambian cohort. FASEB J. 29, 3426–3435 (2015).
www.fasebj.org
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CHOLINE IS AN ESSENTIAL NUTRIENT (1)with functional relevance
in a wide array of biologic pathways, including epigenetic
modulation of gene expression, brain development, hepatic
lipid homeostasis, and energy metabolism. Choline is posi-
tioned at the intersection of 1-carbonmetabolism pathways,
which generate methyl groups from choline, methionine,
and folate that are essential for biologic methylation reac-
tions (2). Two key phenotypes emerge when dietary choline
is limited in humans. The most prominent is in the liver,
where accumulation of lipids is concurrent with increased
markers of damage, such as elevated serum liver enzymes
and hepatocyte apoptosis. A smaller subset of individuals
exhibit amusclephenotypecharacterizedbyelevatedserum
creatine phosphokinase from muscle. These symptoms re-
solve when choline is reintroduced into the diet (3–6).
Furthermore, there is an extensive body of literature dem-
onstrating the metabolic and health consequences of in-
adequate choline intake, ranging from neural tube defects
to cancer, in various ethnic groups (3, 6–11).

Abbreviations: AI, adequate intake; CD, choline dependence/
dependent; CHDH, choline dehydrogenase; EUR, European;
GAM, The Gambia; LD, linkage disequilibrium; MKK,
Maasai in Kinyawa, Kenya; MALDI-TOF, matrix-assisted laser
desorption/ionization–time-of-flight; MAF, minor allele fre-
quency; MTHFD1, methylenetetrahydrofolate reductase 1;
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Adequate intake (AI) for choline, established from
observations of choline intake in healthy U.S. adults, is
425–550 mg/d (1, 12). However, the requirement for
choline is modulated by several factors, including sex, men-
opausal status (5), and the gut microbiome (13). Genetic
variation alsoplays a role, and3 functional single-nucleotide
polymorphisms (SNPs) in particular are known to increase
dependence on dietary choline. These are hereafter re-
ferred to as choline-dependent (CD) SNPs: choline
dehydrogenase (CHDH), rs12676; methylenetetrahy-
drofolate reductase 1 (MTHFD1), rs2236225; and phospha-
tidylethanolamine-N-methyltransferase(PEMT), rs12325817
(3, 6) (Fig. 1).

Several linesof evidencedemonstratea role forCDSNPs
in affecting metabolism and dependence on dietary cho-
line.CHDH encodes amitochondrial protein that catalyzes
the first irreversible step in the oxidation of choline to
betaine. Premenopausal female carriers of the T allele of
CHDH rs12676 (a nonsynonymous coding SNP) have
greater dependence on dietary choline (3). In men, this
allele is also associated with lower sperm CHDH protein
levels (14). Individuals with this SNP need more choline
precursor to drive production of this reaction’s product,
betaine, which is necessary for methylation reactions.

MTHFD1 encodes a folate-metabolizing enzyme that cata-
lyzes 3 reactions that direct the flow of 1-carbon folates (15);
the formation of 5-methyl-terahydrofolate (5-methyl-THF) is
practically irreversible in vivo, but the interconversion of 5,10-
methylene-THF and 10-formyl-THF is closer to equilibrium
(6, 16). Thus, 5,10-methylene-THF may be directed by
MTHFD1, either toward homocysteinemethylation or away
from it. The MTHFD1 rs2236225 polymorphism (a non-
synonymous coding SNP) increases the flux between 5,10-
methylene-THF and 10-formyl-THF and thereby reduces
the flux between 5,10-methylene-THF and 5-methyl-THF,
making less 5-methyl-THF available for homocysteine
remethylation. When 5-methyl-THF is not available, more
betaine from choline is needed for homocysteine remethy-
lation (6, 17). Carriers of the A allele ofMTHFD1 rs2236225
thus have an increased dependence on dietary choline (6).

PEMT encodes an enzyme that sequentially methylates
phosphatidylethanolamine togeneratephosphatidylcholine,
a source of choline (18). PEMT expression is induced by
estrogen, and PEMT rs12325817 is a promoter SNP that
abrogates estrogen-mediated induction of the gene (19).
Female carriers of the C allele of this SNP (on the coding
strand) are more susceptible to development of organ dys-
functionwhen eating a low-choline diet (3–5), because they
are less able to induce the gene with estrogen and thereby
make less of their own choline (in the form of phosphati-
dylcholine). It is reasonable to suggest that women with CD
SNPs who are eating low-choline diets deliver less choline to
the fetus (via the placenta) and that this could negatively
affect fetal outcome (20). There may also be effects on the
establishment of methylation patterns in the epigenome of
the very early embryo, in that these are known tobe sensitive
to nutrients in the 1-carbon pathway (21).

The distribution of multiple SNPs in genes within the
1-carbon metabolism pathway varies across different
ethnic groups, and these genetic patterns are associated
with different health outcomes (22, 23). Differences in
the distribution of CD SNPs are particularly evident
between populations of Caucasian andAfrican descent (22,
23). The diversity in access to choline in various regions of
the world led us to hypothesize that the disparate frequency
of functional variants incholinemetabolism is influencedby
dietary selective pressures. Using 2 independent statistical
methods, we tested this hypothesis of choline-mediated se-
lective pressure by comparing 2 populations: one in The
Gambia (GAM) with a choline-poor diet (24–28), and the
other composed of individuals of Caucasian/European de-
scent (EUR) fromNorthCarolina in theUnited States, with
a relatively choline-rich diet (29–32). Furthermore, we
compared allele frequencies of CD SNPs in GAM and EUR
cohorts with those observed in another African population
[HapMap (InternationalHapMap Project, National Center
for Biotechnology Information, Bethesda, MD, USA)]: the
Maasai in Kinyawa, Kenya;MKK), an ethnic population that
is genetically more similar to Gambians, but with a tradi-
tional diet that is relatively high in choline (33).

MATERIALS AND METHODS

North Carolina clinical cohort

The individuals included in this study were men and women
from 3 previously reported studies (4, 5, 34). Briefly, these
studies examined the amount of dietary choline needed for
optimal health and the role played by genetic variation. In one
study, dietary choline restriction produced liver and muscle
phenotypes in subjects who were inpatients at the Clinical and
Translational Research Center, University of North Carolina
(UNC) Chapel Hill School of Medicine. There were 3 phases
to the study. The baseline phase provided a diet with adequate
choline (550 mg/70 kg per day). The choline depletion phase
provided 50 mg choline per day. The final repletion phase
reintroduced adequate choline into the diets (5). The second
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Figure 1. Metabolic pathways modulated by CHDH, PEMT, and
MTHFD1. Choline is oxidized to form betaine by CHDH. Betaine
is used as a methyl donor in the formation of methionine. MTHFD
catalyzes the formation of methyltetrahydrofolate, which is an
alternative methyl donor in the formation of methionine. Methi-
onine is used to form S-adenosylmethionine, which is necessary
in the methylation of phosphatidylethanolamine to form phos-
phatidylcholine. Genetic polymorphisms in CHDH, PEMT, and
MTHFD1 increase dependence on dietary choline by modulating
the formation of choline and its utilization as a methyl donor.
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PCA, principal component analysis; PEMT, phosphatidyleth-
anolamine-N-methyltransferase; SNP, single-nucleotide poly-
morphism; THF, tetrahydrofolate
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study was similar to the first, but the focus was on women and the
importance of estrogen for endogenous choline synthesis (4). In
the third study, pregnant women were examined to determine
whether total choline intake, SNPs, or both influence the amount
of choline and its metabolites found in breast milk and plasma
(34).Written informedconsentwasobtained fromallparticipants,
and the Institutional Review Board at UNCChapel Hill approved
all protocols. The samples used in the study included 162 Cauca-
sian individuals from whom sufficient DNA was available for gen-
otyping. Three first-degree relatives were excluded, leaving 159
subjects (17 males and 142 females) for analysis.

Gambian study cohort

Weselectedwomenwhoparticipated in1of3studies inTheGambia
(24, 35, 36), for whom a DNA sample was available for genotyping
and excluded all first-degree relatives, so that 241 subjects were
available for the study. Briefly, all women were recruited between
2009 and 2010 in the KiangWest district of rural Gambia, from the
36 villages in the catchment area of the Medical Research Center
(MRC)InternationalNutritionGroup’sfieldstationatMRCKeneba
(http://www.ing.mrc.ac.uk). Written informed consent was obtained
from all participants, and the joint Gambian Government/MRC
Ethics Committee approved all procedures.

Gene and variant selection and genotyping

Gene variants used in this study were those selected for a previous
investigation that targeted SNP mapping to genes in the choline
pathway and the intersecting folate and methionine pathways
(65 kb from gene boundaries, to assess the role of distal regulatory
elements); in peripherally related genes thatmetabolize choline
containing lipids; or in genes with a direct relationship to fatty
liver, a choline-mediated phenotype (22). The set of genotyped
SNPs included the 3 CD SNPs that were the focus of this study
(CHDH rs12676, MTHFD1 rs2236225, and PEMT rs12325817),
because they have been associated with an increased dependence
ondietary choline (3–6, 34, 37) andhave known functional effects
on choline metabolism (14, 15, 19, 37, 38). For this study, we
included 226 SNPs genotyped in both theGAMandEUR cohorts,
but removed 12 SNPs for which there is limited evidence of an
influence on dietary choline requirements (23), but no func-
tionaldata, as thesemayotherwisehavebiasedouranalysis.Thus,
of the remaining 214 SNPs, 3 are theCDSNPsand the remainder
lack any published evidence of a role in modulating choline
requirements, as is necessary for our statistical tests to be valid.
Details of further SNP filtering procedures are given below.

Samples were genotyped as described in several publications
(6, 19, 22, 23). Briefly, 98%of SNPs were genotyped with an oligo-
specific extension-ligation assay on a custom Golden Gate array
(Illumina, Inc., San Diego, CA, USA) (39). We used an in-house
real-time PCR assay for the PEMT rs12325817 SNP (22, 23), be-
cause it cannot be genotypedon the Illuminaplatform. Four SNPs
in the EUR cohort were genotyped by alternative methods. Two
CD SNPs, rs12676 and rs2236225, had a subset of samples that
failed on the Illumina platform, so they were genotyped viamatrix-
assisted laser desorption/ionization–time-of-flight (MALDI-TOF)
primer-extensionassay (Sequenom, Inc., SanDiego,CA,USA)(22).
Two other SNPs, rs3733890 and rs4244599, were part of targeted
investigations before implementation of the custom Illumina
array. They were genotyped viaMALDI-TOF mass spectrometry
and real-time PCR, respectively, as described elsewhere (6, 19).

MKK genotypes

We downloaded MKK genotypes for 95 unrelated individuals
(42 males, 43 females), genotyped at 1,457,897 SNPs as part of

HapMap3 (40). A majority of the 214 study SNPs genotyped in
GAM and EUR were not present in the HapMap data, in-
cluding 2 of the 3 CD SNPs. All missing SNPs were therefore
imputed using IMPUTE2 (41), with phase 1 data from the 1000
Genomes project (EMBL-EBI, Hinxton, United Kingdom) as a
referencepanel.HapMapMKKgenotypeswereconverted fromthe
hg18 to hg19 genome build using liftOver (http://hgdownload.cse.
ucsc.edu/admin/exe/linux.x86_64/liftover) before imputation. Met-
rics for imputation quality indicated that the 2 CD SNPs were
imputed with high confidence (IMPUTE2 info = 0.98 and
certainty = 0.99 for rs12676; info = 0.97, certainty = 0.99 for
rs12325817). IMPUTE2metrics for internal cross-validation of
existing sample genotypes against imputed values indicated
that imputation was successful (.95% overall concordance;
Supplemental Table 1). Thirty-four SNPs could not be confi-
dently alignedwithGAMandEURallele calls because they had
complementary alleles that made strand direction difficult to
assign. Thus, 180 SNPs remained for the MKK cohort before
SNP filtering.

SNP filtering

Our statistical tests for selection treat missing and monomorphic
SNPsdifferently andperformdifferent cross-cohort comparisons.
For this reason, SNP filtering strategies vary, and we consider
these for each test separately.

Method 1: pairwise cross-cohort comparisons

For each cross-cohort comparison, only SNPs with genotype
data across both cohorts were considered (GAM vs.EUR: 214
SNPs considered; GAM vs.MKK and MKK vs. EUR: 180). All
SNPs with a genotype call rate ,90% in either cohort were
removed (GAM vs. EUR: 3 SNPs removed; GAM vs. MKK 2;
MKK vs. EUR: 1). Because nonzero minor allele frequencies
(MAFs) are necessary to calculate variance-adjusted statis-
tics, we further removed all SNPs that were monomorphic in
either cohort (GAM vs. EUR: 16 SNPs removed; GAM vs.
MKK: 6 SNPs; MKK vs. EUR: 12 SNPs). Finally, because the
statistical test assumes that SNPs are independent, for each
cross-cohort comparison, wemeasured pairwise correlations
between all SNPs in each cohort and retained only 1 of each
pair of SNPs with an r2 $ 0.8 in either cohort (GAM vs. EUR:
21 SNPs removed; GAM vs. MKK 23 SNPs; MKK vs. EUR: 26
SNPs). This process left 174 SNPs for the GAM vs. EUR
analysis, 149 SNPs for GAM vs. MKK and 141 SNPs for MKK
vs. EUR.

Method 2: population genetic model

This method can accommodate SNPs that are missing in only 1
cohort or aremonomorphic in1–2of the 3 cohorts.We therefore
considered all 214 SNPs for this analysis, but recorded SNPs with
a genotypecall rate,90% inany cohort asmissing for that cohort
(1 EUR SNP and 2 GAMSNPs). We further removed 2 SNPs that
were monomorphic across all 3 cohorts and performed linkage
disequilibrium(LD)filteringacross all 3 cohorts using the same r2

threshold as described for method 1, which resulted in the re-
moval of another 38 SNPs, leaving 174 SNPs for the method 2
analysis. To generate empirical probabilities to test against the
null hypothesis of no negative selection in the GAMcohort at the
CD SNPs, we used 144 of these 174 SNPs that were nonmissing in
all 3 cohorts.However,wenote that results were very similar when
we used all 210 SNPs that were nonmissing in theGambia cohort
for this analysis.

3428 Vol. 29 August 2015 SILVER ET AL.The FASEB Journal x www.fasebj.org

http://www.ing.mrc.ac.uk
http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/liftover
http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/liftover
http://FJ.fasebj.org/lookup/suppl/doi:10.1096/fj.15-271056/-/DC1
http://www.fasebj.org


Statistical tests for selection

Variation in SNP allele frequencies, both within and between
populations, may be driven by selection or by random pro-
cesses of genetic drift. Genetic drift can lead to SNPs being
driven to fixation or lost entirely from a population simply by
random chance (42). It is also possible for variants to arise de
novo in a population through mutation. It is therefore im-
portant to allow for the possibility that any or all of these factors
may be the cause of variation in allele frequencies when
looking for evidence of selection at any particular SNP. We
used 2 statistical tests for assessing evidence of negative selec-
tion at CD SNPs in the GAM sample.

Method 1: pairwise cross-cohort comparisons

Methods for assessing evidence of selection generally rely on
dense genotyping around SNPs or genes of interest (43). Because
we did not have access to such data, we instead tested each SNP
independently, using a statistical test that compares allele fre-
quency changes of CD SNPs to an empirical null distribution of
the same test statistic calculated for other genotyped SNPs not
known to increase dependence on dietary choline. We per-
formed3 separate cross-cohort comparisons:GAM vs.EUR;MKK
vs. EUR; and MKK vs. EUR. Here, we describe our method for
assessing evidence of negative selection in the GAM vs. EUR
cohorts. The corresponding tests for the other 2 cross-cohort
comparisons proceed in a similar manner.

For each SNP and in each cohort, we recorded the SNPMAF,
where theminor allele is defined as the less frequent allele in the
EUR population. Note that by applying this parameter, the
functional variant known to increase dependence on dietary
choline is theminor allele for all 3CDSNPs inall cohorts.Wenext
calculated the change in MAF for SNP j as

dm j ¼ m
j
GAM 2m

j
EUR

where mGAM and mEUR are the minor allele frequencies in the
GAM and EUR populations, respectively. The mean change in
MAF for a set S of 3 SNPs is then given by

dM ¼
1

3
+
j2S

dm j

Thedistributionof this test statistic under the null, where all SNPs
are subject to the same random fluctuations, is obtained by cal-
culating the mean change in MAF for all 862,924 possible com-
binations of 3 SNPs drawn from the complete set of 174markers.
A significance measure for the alternative hypothesis that the 3
CD SNPs are under negative selection may then be computed as
the proportion of all possible values for the test statistic that show
amean decrease in MAF at least as small as dMCD, where dMCD is
the value of dM, when S is the set of CD SNPs. An implicit as-
sumption is that all SNPs are independent, and, for this reason, in
a preprocessing step, wefiltered SNPs by LD, ensuringmaximum
pairwise LD r2 = 0.8. The accuracy of our method is particularly
sensitive to violations of nonindependence at CD SNPs, and we
therefore present the pairwise r2 coefficients for these inTable 1.

We calculated a variance-adjusted probability to account for
differences in thedistributionofminor allele dosage at eachSNP,
by computing aWelch-type t statistic for themean change inMAF
at SNP j as

dm jp ¼
dm j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s
j2

GAM

n
j

GAM

þ
s
j2

EUR

n
j

EUR

r

where sjGAM is the sample variance in minor allele dosage in the
Gambiancohort,njGAM is thenumberof recordedgenotypes forSNP

j, and so on. This calculation allows us, for example, to down-weight
large changes in MAF between cohorts where variance in minor
allele dosage within one or both cohorts is large, or the number of
genotyped SNPs is relatively small. Variance-adjusted significances
are then calculated by permutation as outlined above, with

dM * ¼
1

3
+
j2S

dm j*

Summary statistics for all SNPs are presented in Supplemental
Table 2.

Method 2: population genetic model

This test calculates the probability of observing the sampled data
based on a standard population genetics model that assumes no
selection (44). The setup and model are very similar to that de-
scribed in Beaumont and Balding (45), differing only in the mech-
anistic details of inference. Inparticular, themodel assumes that the
3 populations originate from a common ancestral population,
equivalent to a treemerging the 3 groups via 2 internal nodes, with
SNP allele frequencies changing from generation to generation, as
they are subject to processes of randomdrift. In addition to allowing
a joint comparison of the allele frequencies across all 3 cohorts at
once, this test is expected to be more powerful than the method 1
test if the underlying model is an accurate summary of the real
historical processes affecting the populations’ allele frequencies.

As in method 1, we define the minor allele to be the less fre-
quent allele in the EUR population. At each SNP, we assume the
minor allele count X in a given cohort (i.e., where X 2 {G, C, M},
where G = GAM, C = EUR, M = MKK) follows a binomial (nX,pX)
distribution, with nX the number of nonmissing sampled hap-
lotypes and pX the (unknown) frequency of the minor allele for
the given population at this SNP. As in Balding and Nichols (44),
we assumed that pX follows a b distribution with mean (pX) = pA
andVar(pX)=dXpA(12pA).Here,pA is the(unknown)ancestralallele
frequency for this minor allele, equivalent in this 3-population case to
the allele frequency at the junction in the tree where all 3 populations
merge, and dX measures the relative drift in population X from
this ancestral frequency. In this scenario, we can integrate out pX
analytically, giving Pr(X | pA, dX) which follows a b-binomial dis-
tribution. At the given SNP, the joint probability of the minor
allele counts for all 3 cohorts, conditional on the dX of each, is:

PrðG ;C ;M jdG ; dC ; dM Þ

¼
R

pG

R

pC

R

pM

R

pA
Pr
�

G ;C ;M ; pG ; pC ; pM ; pA
�

�dG ; dC ; dM
�

dpGdpCdpMdpA

¼
R

pA

�

R

pG
Pr
�

G jpG
�

Pr
�

pG
�

�pA; dG
�

dpG
R

pC
Pr
�

C jpC
�

Pr
�

pC
�

�pA; dC
�

dpC

R

pM
Pr
�

M jpM
�

Pr
�

pM
�

�pA; dM
�

dpM

�

Pr
�

pA
�

dpA :

(1)

We assume Pr(pA) follows a uniform distribution and integrate
out pA numerically to calculate Eq. 1. Assuming independence
across the 174 SNPs remaining after our LD-pruning procedure
(see SNP filtering, above), we find the maximum likelihood esti-
mates (MLEs) of {dG, dC, dM} bymaximizing the joint likelihood of

TABLE 1. Pairwise r2 coefficients for 3 CD SNPs in each cohort

SNPs r2(GAM) r2 (EUR) r2 (MKK)

rs12325817a, rs2236225 0.020 0.024 0.003
rs2236225, rs12676a 0.008 0.006 0.028
rs12325817a, rs12676a 0.003 0.000 0.005

aMKK imputed allele.
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Eq. 1 across all 174 SNPs over a 3-dimensional grid. Assuming that
the frequencies at most of these 174 SNPs are not affected by
selection, this method provides estimates of the genome-wide
expected drift value for each population’s allele frequency relative
to the ancestral frequency value, under a neutral model with no
selection. Letting fd̂G ; d̂C ;

d̂Mg be ourmaximum likelihood values
of fdG ; dC ; dMg we next use Eq. 1 to calculate:

Pr
�

g #G jC ;M ; d̂
�

¼ Pr
�

g #G ;C ;M jd̂
�.

Pr
�

C ;M jd̂
�

¼ Pr
�

g ; #G ;C ;M jd̂
�.h

+nG
h¼0Pr

�

h;C ;M jd̂
�i

:

(2)

for each of 144 LD-pruned SNPs with nonmissing data in all 3
cohorts. For each SNP, this calculation gives the probability of
observing a minor allele count less than or equal to that sam-
pled in the GAM cohort, given the minor allele counts sam-
pled in the EURandMKK cohorts and our inferred drift values
for each population. We next take the average of Eq. 2 across
the 3 CD SNPs. Finally, analogous to the permutation
procedure in method 1, we found the average across all
�

144
3

	

=487,344 subsets of 3-SNP combinations and calculated

the proportion of such 3-SNP averages that were smaller than

those of the 3 CD SNPs. This proportion provided an empirical

probability that tested the null hypothesis that the allele fre-

quencies forGAMat the3CDSNPs follow theaboveneutral beta-

binomialmodel vs. the1-sidedalternativemodel inwhich theCD

SNP GAM frequencies are smaller than that expected under the

neutral model. Full details are given in Supplemental Methods 1.

RESULTS

Principal component analyses (PCAs) of 144 SNPs in com-
mon across the 3 cohorts (GAM, EUR, andMKK) revealed
the extent to which these vary in their genetic background
(Fig. 2). The results support our hypothesis that EUR and
MKK represent interesting choline-rich comparator pop-
ulations, one (MKK) with a genetic background similar to
that of GAM and the other (EUR) with a genetic back-
ground that is more distinct.

We first assessed evidence of negative selection of CD
SNPs by using a method based on pairwise cross-cohort
comparisons (method 1). We compared MAFs in GAM vs.
EUR, GAM vs.MKK, and MKK vs. EUR. Cross-cohort MAF
distributions arepresented inFig. 3. Thisfigure shows awide
distribution inMAFdifferences across all testedSNPs ineach
cross-cohort comparison, although these differences are
markedly reducedwhen themoregenetically similarAfrican
populations are compared (middle plots). The 3 CD SNPs
(black filled circles) show a lower MAF (negative dmj) in
GAMcompared to EUR (top right plot).MAFs for CD SNPs
in each cohort are presented inTable 2. Results of statistical
tests for evidence of negative selection at CD SNPs are pre-
sented inTable 3. Theseprovide strongevidenceof negative
selection ofCDSNPs inGAMcomparedwith bothEURand
MKK (adjusted P = 0.007, 0.002), and weaker evidence of
negative selection inMKKcomparedwithEUR(adjustedP=
0.04). The evidence of negative selection was strongest in
GAM vs.MKK, because the observed reductions in CD SNP
MAFs took place against a genetic background where there
was relatively little overall difference in MAFs between the 2
cohorts (Fig. 2 and middle right-hand plot in Fig. 3). Right-
hand plots in Fig. 3 reveal that the 3 CD SNPs showed a rel-
atively large reduction in MAF compared to background in
GAM vs. EUR, whereas only rs2236225 (MTHFD1) and
rs12676 (CHDH) showed such a reduction in GAM vs.MKK
and only rs12325817 (PEMT) in MKK vs. EUR.

We performed a further, independent test to identify
negative selection of CD SNPs by using an alternative pop-
ulation genetic model that compares SNP frequencies
across all 3 cohorts simultaneously (method 2). Results are
presented in Table 4. Although this method tests a slightly
different null hypothesis—namely, whether the GAM data
at the CD SNPs follow expectations under a neutral model,
given the EUR andMKK data—the results strongly support
the findings of method 1. In particular, we found strong
evidence of negative selection of CD SNPs in GAM than in
EUR andMKK (P = 0.008 by permutation) andno evidence
of negative selection in MKK vs. EUR and GAM (P = 0.7).

P
C
2

P
C
2

PC1 PC1 PC1

C D 

E 

A B 

F G 

Figure 2. Cross-cohort comparisons confirm that GAM and MKK individuals are more closely related genetically than are EUR
individuals. Plots illustrate the first 2 principal components from (A–C) 1-, (E–G) 2-, or (D) 3-cohort PCAs. PCAs illustrate
interindividual differences at 144 SNPs across the 3 cohorts.
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Figure 3. Cross-cohort MAF distributions illustrate MAF differences at CD SNPs compared to genetic background. MAF comparisons
are shown for (A) GAM vs. EUR, (C) GAM vs.MKK, and (E) MKK vs. EUR. Note that the minor allele is defined for the EUR cohort, so
that, in the top and bottom plots, the EUR MAF, mEUR # 0.5 for all SNPs, and the possible change in MAF for SNP j in the non-EUR
cohort ranges from 20.5 to 1. SNPs with reduced MAF in (A, C) GAM and (E) MKK are located to the left of the dashed black line of
parity. These include the 3 CD SNPs (filled circles). B, D, F) distribution of MAF differences, dmj for each cross-cohort comparison. In
each case, dmj is defined as the SNP MAF in the cohort on the y-axis subtracted from the SNP MAF for the cohort on the x-axis. Solid
black vertical lines illustrate dmj for the 3 CD SNPs.
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DISCUSSION

Choline deficiency has known deleterious effects on health
(3, 6–11) and reproduction (20). Although the essentiality of
choline in the diet has been tested directly only in U.S. pop-
ulationswhere the2mostprominent racesareCaucasianand
African American (3–6), the biologic consequences of in-
adequate choline intake have been demonstrated in a wide
range of human (3, 6–11) and rodent studies (46–48). It is
therefore biologically plausible that where dietary choline is
restricted, a genetically optimized cholinemetabolismwould
be likely to confer a survival advantage, irrespective of eth-
nicity or geographic location.

Numerous statistical methods have been developed for
identifying genomic regions undergoing selection (see Ref.
49 for a review). Several rely on capturing multiple variants
within each locus (50–52) or require densely genotyped
data (53, 54). In this study, we instead used 2 independent
statisticalmethods that enableanalysis of sparsely genotyped
unlinkedSNPs, toassess for evidenceofnegative selectionof
SNPs that increase dependence on dietary choline in pop-
ulations with divergent access to choline-containing foods.
The first method used a standard statistical test based on
cross-cohort comparisons of observed differences in allele
frequencies in the GAM, EUR, and MKK cohorts, and
compared MAF changes in known CD SNPs against other
genotypedSNPsnot known to affect dependenceondietary
choline. In the secondmethod, wemodeled observedMAF
differences in a population genetic model closely related
to work described by Beaumont and Balding (45) that
describes processes of drift that lead to genetic divergence
betweenpopulationsover time.As inmethod1,we assumed
that the non-CD SNPs are neutral, both when inferring the
relative levels of drift separating populations’ allele fre-
quencies and when generating an empirical null distribu-
tion to calculate probabilities. It remains a possibility that 1

or more of these “background” SNPs could influence de-
pendence on dietary choline, potentially biasing our test
statistics in one or the other direction, depending on
whether minor alleles increase or decrease this depen-
dence. Indeed, an interesting finding that warrants fur-
ther investigation is the presence of other SNPs that have
very high or very lowMAFs inGAMvs. EUR (Fig. 3A, top left
and bottom right quadrants). These represent promising
candidates for future functional studies. Both statistical
approaches assume that SNPs are independent after LD
pruning, although we note that results changed little when
no SNPs were excluded based on LD.

The population in GAM is a goodmodel for low choline
availability.Our study cohort is from theKiangWest district
in rural Gambia, wheremean choline intake in womenwas
recently estimated to be 155 mg/d, with only 2.8% of the
women consuming intakes above 425 mg/d (24). This
level of intake is in line with historic evidence and docu-
mentationdescribing the traditionalGambiandiet,which is
rice-based and low in choline-rich foods, such as meats,
milk, and eggs (25–28). In contrast, in theU.S. choline-rich
foods are abundant in the current food supply, and the
mean choline intake is ;2 times higher than in The
Gambia (32, 55). Investigations of traditional foods in the
United States suggest an abundance of foods of animal
origin (30, 31), which supports the likelihood of higher
choline availability in Caucasian immigrant populations in
the United States than in GAM during evolutionarily rele-
vant time frames. It isnotable that current intakesof choline
in Europe are similar to those in theUnited States (56) and
are in agreement with traditional foods consumed in
Europe (57). Therefore, although there is a lack of direct
evidence on historic diets, current intakes in GAM, the
United States, and Europe align with traditional diets and
support our characterization of low choline intake in GAM
relative to that in theUnited States andEurope.Despite the

TABLE 2. Minor allele frequencies at 3 CD SNPs in the GAM, MKK, and EUR cohorts

SNPs
Minor (major) allele

from EUR data MAF_GAM MAF_MKK MAF_EUR

rs12676a,b T(G) 0.09 0.23 0.29
rs2236225 A(G) 0.18 0.40 0.46
rs12325817a,b C(G) 0.12 0.15 0.43

aMKK-imputed allele. bReported based on the reverse genome strand, because these genes are
transcribed from that strand (dbSNP build 141).

TABLE 3. Statistical tests for evidence of negative selection at 3 CD SNPs, according to cross-cohort
comparison method 1

Comparison Null hypothesis tested
SNPs

tested (n) Unadjusted P

Variance-
adjusted P

GAM vs. EUR CD SNP MAFs are not significantly
reduced in GAM compared
with EUR

174 0.004 0.007

GAM vs. MKK CD SNP MAFs are not significantly
reduced in GAM compared
with MKK

149 0.002 0.002

MKK vs. EUR CD SNP MAFs are not significantly
reduced in MKK compared
with EUR

141 0.03 0.04

3432 Vol. 29 August 2015 SILVER ET AL.The FASEB Journal x www.fasebj.org

http://www.fasebj.org


inherent difficulty in characterizing historic diets in evolu-
tionary studies, there is evidence supporting recent and
continuous diet-driven selection in humans (58). Although
we focused on dietary choline because of the known effects
of choline deficiency in humans and the modulation of
theseeffectsby specificgenetic variants,weacknowledge the
possibility that other 1-carbon nutrients could influence the
negative selective pressure that we addressed in this study.

Our evidence that negative selection occurs at 3 func-
tional CD SNPs in different genes that independently
modulate choline metabolism supports our hypothesis that
the observedMAF changes are unlikely to have occurred by
chance. These findings were strengthened by observed
shifts inMAF inMKK, apopulation that is genetically similar
toGAM(59, 60), butwith a traditionallymuchhigher intake
of choline from foods such asmilk, meat, and blood (33). It
is therefore striking that a cross-cohort comparison of GAM
vs. MKK provided equally strong evidence of negative se-
lection at CD SNPs, supporting the argument that MAF
differences are due to differences in choline intake, rather
thanchanceor someother factor.OuruseofMKKHapMap
genotypes required thatwe imputemultiplemissingSNPs to
enable a comparison with existing EUR and GAM data.
Genotype imputation is an establishedmethod for inferring
missing genotypes, although imputation accuracy can vary
between populations and genomic regions (61). Internal
cross-validation checks confirmed that imputation of miss-
ing genotypes for MKK data was successful. We note that
neither of our statistical methods is able to distinguish be-
tween the equivalent scenarios of negative selection of CD
SNPs inGAMandpositive selectionofCDSNPs inMKKand
EUR.However, given the knowndeleterious effects of these
SNPs in conditions of low dietary choline, we consider the
former scenario to be the most probable.

The results presented here are consistent with those in
other studies showing the influence of diet on gene selec-
tion. A prominent example is the genotype-mediated per-
sistenceof lactase functionality, and thus theability todigest
lactose inmilk, inpopulationswithhighdairy intake suchas
theMaasai (62). It is interesting that this persistence occurs
in parallel with positive selection of lipid metabolism gene
variants that are cardioprotective (63). In this population,
the high cholesterol and fat intake from the traditional diet
is not accompaniedby thehighblood cholesterol levels and
increased incidence of cardiovascular disease that is seen in
European populations where lactase function persists in
the absence of the positive selection of lipid metabolism
variants and in an environment where high fat, high cho-
lesterol foods are common (63). This suggests that the
mismatch between diet and the genes involved in the
metabolic pathways of these dietary components in

Europeans contribute to adverse health outcomes. The
selection for lactase persistence is estimated to have oc-
curred 7500 years ago, suggesting that relatively recent
dietary influences can modify the persistence of genetic
variants (64). Additional support for the influence of diet
on genetic variation is the positive selection in pop-
ulations with high starch intake of additional copies of
the salivary amylase gene which encodes the enzyme re-
sponsible for starch hydrolysis (65). The switch to high-
starch diets occurred approximately 10,000 years ago
after the transition from hunter-gathering to farming,
providing additional support for the influence of relatively
recent dietary exposures on the genome (66). These diet-
genome interactions are believed to optimize metabolic
requirements in humans (67), which fits with our hypoth-
esis that inTheGambia, cholinemetabolismwasgenetically
optimized to adjust for a diet low in sources of choline.

In this study, low dietary choline correlated with a re-
duced frequency of alleles that increase dependence on
dietary choline.Thisfindingcouldhavehealth implications
if there is a mismatch between choline intake and a pop-
ulation’s endogenous capacity to produce choline and its
metabolites. For example, a recent report on food patterns
in MKK shows a shift from a traditional high-choline diet
composed primarily of meat, milk, and blood [which
averages approximately 58 mg of choline per 100 g food
(68)] to one composed primarily ofmilk,maize, and beans
(69) [which averages about 15 mg choline per 100 g food
(68)]. This shift could have health consequences for future
generations of Maasai, whose genotypes are adapted to
a high-choline diet. Our finding that SNPs that influence
choline requirements occur at different frequencies across
populations raises the possibility that current recom-
mended intake levels for choline are not optimal across all
populations and that they may need to be reevaluated to
account for genetic differences. Finally, current methods
for identifying functional genetic variants are labor andcost
intensive, involving computationally intensive genome-
wide screens combined with large epidemiologic studies
or in-depth phenotyping in clinical studies. In this study,
we offer a relatively simple alternative approach, whereby
differences in the frequency of genetic variants within
nutrient-relevant metabolic pathways across populations
with divergent levels of nutrient intake can highlight puta-
tive functional SNPs that warrant further investigation.
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