242 research outputs found

    Diagnosis of alpha-1-antitrypsin deficiency in bleeding disorder-related neonatal death

    Get PDF
    Alpha-1-antitrypsin (AAT) deficiency is a rare genetic disorder characterized by hepatitis in neonates, childhood and adulthood (protease inhibitor (PI)*ZZ) and emphysema with or without hepatitis (PI*ZZ)/(PI*SS,SZ or null) in adulthood. We report the case of a female neonate born at 40 weeks of gestation who presented with vitamin K deficiency-related intracranial bleeding and cholestasis of which she died at 28 days of age. At autopsy, the infant was found to have intracranial bleeding, hepatomegaly, and cholestasis with paucity of bile ducts in the liver. Small periodic acid-Schiff diastase positive intrahepatic granules and positive staining with antibodies against AAT protein suggested an AAT deficiency. AAT is a glycoprotein that has a protease inhibitor function. Its deficiency can be the result of various point mutations in Serpin 1 located on chromosome 14. The diagnosis AAT deficiency was confirmed by mutation analysis showing the PI*ZZ genotype in the neonate. In conclusion, AAT deficiency is a rare genetic disorder that can lead to a serious bleeding disorder in the neonatal period if not recognised on time. Pathological diagnosis together with verifying molecular analysis can be used to identify index patients

    α1-Antitrypsin deficiency.

    Get PDF
    α1-Antitrypsin deficiency (A1ATD) is an inherited disorder caused by mutations in SERPINA1, leading to liver and lung disease. It is not a rare disorder but frequently goes underdiagnosed or misdiagnosed as asthma, chronic obstructive pulmonary disease (COPD) or cryptogenic liver disease. The most frequent disease-associated mutations include the S allele and the Z allele of SERPINA1, which lead to the accumulation of misfolded α1-antitrypsin in hepatocytes, endoplasmic reticulum stress, low circulating levels of α1-antitrypsin and liver disease. Currently, there is no cure for severe liver disease and the only management option is liver transplantation when liver failure is life-threatening. A1ATD-associated lung disease predominately occurs in adults and is caused principally by inadequate protease inhibition. Treatment of A1ATD-associated lung disease includes standard therapies that are also used for the treatment of COPD, in addition to the use of augmentation therapy (that is, infusions of human plasma-derived, purified α1-antitrypsin). New therapies that target the misfolded α1-antitrypsin or attempt to correct the underlying genetic mutation are currently under development

    Obesity and STING1 genotype associate with 23-valent pneumococcal vaccination efficacy

    Get PDF
    © 2020, Sebastian etal. BACKGROUND. Obesity has been associated with attenuated vaccine responses and an increased risk of contracting pneumococcal pneumonia, but no study to our knowledge has assessed the impact of obesity and genetics on 23-valent pneumococcal vaccine (PPSV23) efficacy. We assessed the relationship of obesity (primary analysis) and stimulator of interferon genes (STING1) genotype (secondary analysis) on PPSV23 efficacy. METHODS. Nonobese (BMI 22-25 kg/m2) and obese participants (BMI ≥30 kg/m2) were given a single dose of PPSV23. Blood was drawn immediately prior to and 4-6 weeks after vaccination. Serum samples were used to assess PPSV23-specific antibodies. STING1 genotypes were identified using PCR on DNA extracted from peripheral blood samples. RESULTS. Forty-six participants were categorized as nonobese (n = 23; 56.5% women; mean BMI 23.3 kg/m2) or obese (n = 23; 65.2% women; mean BMI 36.3 kg/m2). Obese participants had an elevated fold change in vaccine-specific responses compared with nonobese participants (P \u3c 0.0001). The WT STING1 group (R232/R232) had a significantly higher PPSV23 response than individuals with a single copy of HAQ-STING1 regardless of BMI (P = 0.0025). When WT was assessed alone, obese participants had a higher fold serotype-specific response compared with nonobese participants (P \u3c 0.0001), but no difference was observed between obese and nonobese individuals with 1 HAQ allele (P = 0.693). CONCLUSIONS. These observations demonstrate a positive association between obesity and PPSV23 efficacy specifically in participants with the WT STING1 genotype. TRIAL REGISTRATION. ClinicalTrials.gov NCT02471014. FUNDING. This research was supported by the NIH and the University of Florida MD-PhD Training Program

    Identification of a rare p.G320R alpha-1-antitrypsin variant in emphysema and lung cancer patients

    Get PDF
    The alpha-1-antitrypsin (A1AT) gene is highly polymorphic, with more than 100 genetic variants identified of which some can affect A1AT protein concentration and/or function and lead to pulmonary and/or liver disease. This study reports on the characterization of a p.G320R variant found in two patients, one with emphysema and the other with lung cancer. This variant results from a single base-pair substitution in exon 4 of the A1AT gene, and has been characterized as P by isoelectric focusing. Functional evaluation of the A1AT p.G320R variant was through comparing specific trypsin inhibitory activity in two patients with pulmonary disorders, carriers of the p.G320R variant, and 19 healthy individuals, carriers of normal A1AT M variants. Results showed that specific trypsin inhibitory activity was lower in both emphysema (2.45 mU/g) and lung cancer (2.07 mU/g) patients than in carriers of the normal variants (range 2.51-3.71 mU/g). This rare A1AT variant is associated with reduced functional activity of A1AT protein. Considering that it was found in patients with severe pulmonary disorders, this variant could be of clinical significance

    Association of IREB2 and CHRNA3 polymorphisms with airflow obstruction in severe alpha-1 antitrypsin deficiency

    Get PDF
    Background: The development of COPD in subjects with alpha-1 antitrypsin (AAT) deficiency is likely to be influenced by modifier genes. Genome-wide association studies and integrative genomics approaches in COPD have demonstrated significant associations with SNPs in the chromosome 15q region that includes CHRNA3 (cholinergic nicotine receptor alpha3) and IREB2 (iron regulatory binding protein 2). We investigated whether SNPs in the chromosome 15q region would be modifiers for lung function and COPD in AAT deficiency. Methods The current analysis included 378 PIZZ subjects in the AAT Genetic Modifiers Study and a replication cohort of 458 subjects from the UK AAT Deficiency National Registry. Nine SNPs in LOC123688, CHRNA3 and IREB2 were selected for genotyping. Fev1_1 percent of predicted and Fev1_1/FVC ratio were analyzed as quantitative phenotypes. Family-based association analysis was performed in the AAT Genetic Modifiers Study. In the replication set, general linear models were used for quantitative phenotypes and logistic regression models were used for the presence/absence of emphysema or COPD. Results: Three SNPs (rs2568494 in IREB2, rs8034191 in LOC123688, and rs1051730 in CHRNA3) were associated with pre-bronchodilator Fev1_1 percent of predicted in the AAT Genetic Modifiers Study. Two SNPs (rs2568494 and rs1051730) were associated with the post-bronchodilator Fev1_1 percent of predicted and pre-bronchodilator Fev1_1/FVC ratio; SNP-by-gender interactions were observed. In the UK National Registry dataset, rs2568494 was significantly associated with emphysema in the male subgroup; significant SNP-by-smoking interactions were observed. Conclusions: IREB2 and CHRNA3 are potential genetic modifiers of COPD phenotypes in individuals with severe AAT deficiency and may be sex-specific in their impact

    Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing α1-antitrypsin: interim results

    Get PDF
    Recombinant adeno-associated virus (rAAV) vectors offer promise for the gene therapy of α(1)-antitrypsin (AAT) deficiency. In our prior trial, an rAAV vector expressing human AAT (rAAV1-CB-hAAT) provided sustained, vector-derived AAT expression for \u3e1 year. In the current phase 2 clinical trial, this same vector, produced by a herpes simplex virus complementation method, was administered to nine AAT-deficient individuals by intramuscular injection at doses of 6.0×10(11), 1.9×10(12), and 6.0×10(12) vector genomes/kg (n=3 subjects/dose). Vector-derived expression of normal (M-type) AAT in serum was dose dependent, peaked on day 30, and persisted for at least 90 days. Vector administration was well tolerated, with only mild injection site reactions and no serious adverse events. Serum creatine kinase was transiently elevated on day 30 in five of six subjects in the two higher dose groups and normalized by day 45. As expected, all subjects developed anti-AAV antibodies and interferon-γ enzyme-linked immunospot responses to AAV peptides, and no subjects developed antibodies to AAT. One subject in the mid-dose group developed T cell responses to a single AAT peptide unassociated with any clinical effects. Muscle biopsies obtained on day 90 showed strong immunostaining for AAT and moderate to marked inflammatory cell infiltrates composed primarily of CD3-reactive T lymphocytes that were primarily of the CD8(+) subtype. These results support the feasibility and safety of AAV gene therapy for AAT deficiency, and indicate that serum levels of vector-derived normal human AAT \u3e20 μg/ml can be achieved. However, further improvements in the design or delivery of rAAV-AAT vectors will be required to achieve therapeutic target serum AAT concentrations

    In silico analysis of alpha1-antitrypsin variants: The effects of a novel mutation

    Get PDF
    Alpha1-antitrypsin (AAT) is a highly polymorphic protein with more than 120 variants that are classified as normal (normal protein secretion), deficient (reduced circulating AAT level caused by defective secretion) or null (no protein secretion). Alpha1-antitrypsin deficiency, one of the most common genetic disorders, predisposes adults to pulmonary emphysema and, to a lesser extent, chronic liver disease and cirrhosis. In this report, we provide additional sequence data for alpha1-antitrypsin based on the characterization of a novel variant detected in a 53-year-old heterozygous patient with chronic obstructive pulmonary disease. The mutation occurred on a PI*M2 base allele and was characterized by a T → C transition at nt 97 in exon II that led to the replacement of phenylalanine by leucine (F33L). Since the mutation was found in the heterozygous state with the expression of a normally secreted variant (PI*M1) it was not possible to assess the pattern of F33L secretion. However, computational analyses based on evolutionary, structural and functional information indicated a reduction of 23 Å 3 in the side chain volume and the creation of a cavity in the protein hydrophobic core that likely disturbed the tridimensional structure and folding of AAT. The accuracy of the in silico prediction was confirmed by testing known mutations

    Phylogeny and chromosomal diversification in the <i>Dichroplus elongatus</i> species group (Orthoptera, Melanoplinae)

    Get PDF
    In an attempt to track the chromosomal differentiation in the Dichroplus elongatus species group, we analyzed the karyotypes of four species with classical cytogenetic and mapping several multigene families through fluorescent in situ hybridization (FISH). We improved the taxon sampling of the D. elongatus species group adding new molecular data to infer the phylogeny of the genus and reconstruct the karyotype evolution. Our molecular analyses recovered a fully resolved tree with no evidence for the monophyly of Dichroplus. However, we recovered several stable clades within the genus, including the D. elongatus species group, under the different strategies of tree analyses (Maximum Parsimony and Maximum Likelihood). The chromosomal data revealed minor variation in the D. elongatus species group's karyotypes caused by chromosome rearrangements compared to the phylogenetically related D. maculipennis species group. The karyotypes of D. intermedius and D. exilis described herein showed the standard characteristics found in most Dichroplini, 2n = 23/24, X0♂ XX♀, Fundamental number (FN) = 23/24. However, we noticed two established pericentric inversions in D. intermedius karyotype, raising the FN to 27♂/28♀. A strong variation in the heterochromatic blocks distribution was evidenced at interespecific level. The multigene families' mapping revealed significant variation, mainly in rDNA clusters. These variations are probably caused by micro chromosomal changes, such as movement of transposable elements (TEs) and ectopic recombination. These observations suggest a high genomic dynamism for these repetitive DNA sequences in related species. The reconstruction of the chromosome character "variation in the FN" posits the FN = 23/24 as the ancestral state, and it is hypothesized that variations due to pericentric inversions has arisen independently three times in the evolutionary history of Dichroplus. One of these independent events occurred in the D. elongatus species group, where D. intermedius is the unique case with the highest FN described in the tribe Dichroplini.Centro de Estudios Parasitológicos y de VectoresFacultad de Ciencias Naturales y Muse

    Polymorphism of alpha-1-antitrypsin in hematological malignancies

    Get PDF
    Alpha-1-antitrypsin (AAT) or serine protease inhibitor A1 (SERPINA1) is an important serine protease inhibitor in humans. The main physiological role of AAT is to inhibit neutrophil elastase (NE) released from triggered neutrophils, with an additional lesser role in the defense against damage inflicted by other serine proteases, such as cathepsin G and proteinase 3. Although there is a reported association between AAT polymorphism and different types of cancer, this association with hematological malignancies (HM) is, as yet, unknown. We identified AAT phenotypes by isoelectric focusing (in the pH 4.2-4.9 range) in 151 serum samples from patients with HM (Hodgkins lymphomas, non-Hodgkins lymphomas and malignant monoclonal gammopathies). Healthy blood-donors constituted the control group (n = 272). The evaluated population of patients as well as the control group, were at Hardy-Weinberg equilibrium for the AAT gene (χ2 = 4.42, d.f.11, p = 0.96 and χ2 = 4.71, d.f.11, p = 0.97, respectively). There was no difference in the frequency of deficient AAT alleles (Pi Z and Pi S) between patients and control. However, we found a significantly higher frequency of PiM1M1 homozygote and PiM1 allele in HM patients than in control (for phenotype: f = 0.5166 and 0.4118 respectively, p = 0.037; for allele: f = 0.7020 and 0.6360 respectively, p = 0.05). In addition, PiM homozygotes in HM-patients were more numerous than in controls (59% and 48%, respectively, p = 0.044). PiM1 alleles and PiM1 homozygotes are both associated with hematological malignancies, although this is considered a functionally normal AAT variant
    corecore