8,147 research outputs found
Spectral action for torsion with and without boundaries
We derive a commutative spectral triple and study the spectral action for a
rather general geometric setting which includes the (skew-symmetric) torsion
and the chiral bag conditions on the boundary. The spectral action splits into
bulk and boundary parts. In the bulk, we clarify certain issues of the previous
calculations, show that many terms in fact cancel out, and demonstrate that
this cancellation is a result of the chiral symmetry of spectral action. On the
boundary, we calculate several leading terms in the expansion of spectral
action in four dimensions for vanishing chiral parameter of the
boundary conditions, and show that is a critical point of the action
in any dimension and at all orders of the expansion.Comment: 16 pages, references adde
Generation of two-photon EPR and Wstates
In this paper we present a scheme for generation of two-photon EPR and W
states in the cavity QED context. The scheme requires only one three-level
Rydberg atom and two or three cavities. The atom is sent to interact with
cavities previously prepared in vacuum states, via two-photon process. An
appropriate choice of the interaction times one obtains the mentioned state
with maximized fidelities. These specific times and the values of success
probability and fidelity are discussed.Comment: 4 pages, 5 figure
A note on a gauge-gravity relation and functional determinants
We present a refinement of a recently found gauge-gravity relation between
one-loop effective actions: on the gauge side, for a massive charged scalar in
2d dimensions in a constant maximally symmetric electromagnetic field; on the
gravity side, for a massive spinor in d-dimensional (Euclidean) anti-de Sitter
space. The inclusion of the dimensionally regularized volume of AdS leads to
complete mapping within dimensional regularization. In even-dimensional AdS, we
get a small correction to the original proposal; whereas in odd-dimensional
AdS, the mapping is totally new and subtle, with the `holographic trace
anomaly' playing a crucial role.Comment: 6 pages, io
Further functional determinants
Functional determinants for the scalar Laplacian on spherical caps and
slices, flat balls, shells and generalised cylinders are evaluated in two,
three and four dimensions using conformal techniques. Both Dirichlet and Robin
boundary conditions are allowed for. Some effects of non-smooth boundaries are
discussed; in particular the 3-hemiball and the 3-hemishell are considered. The
edge and vertex contributions to the coefficient are examined.Comment: 25 p,JyTex,5 figs. on request
Heat Kernel Approach in Quantum Field Theory
We give a short overview of the effective action approach in quantum field
theory and quantum gravity and describe various methods for calculation of the
asymptotic expansion of the heat kernel for second-order elliptic partial
differential operators acting on sections of vector bundles over a compact
Riemannian manifold. We consider both Laplace type operators and non-Laplace
type operators on manifolds without boundary as well as Laplace type operators
on manifolds with boundary with oblique and non-smooth boundary conditions.Comment: Lectures at the Conference "Quantum Gravity and Spectral Geometry",
Jul2-2-7, 2001, Naples, Ital
Diffeomorphism invariant eigenvalue problem for metric perturbations in a bounded region
We suggest a method of construction of general diffeomorphism invariant
boundary conditions for metric fluctuations. The case of dimensional
Euclidean disk is studied in detail. The eigenvalue problem for the Laplace
operator on metric perturbations is reduced to that on -dimensional vector,
tensor and scalar fields. Explicit form of the eigenfunctions of the Laplace
operator is derived. We also study restrictions on boundary conditions which
are imposed by hermiticity of the Laplace operator.Comment: LATeX file, no figures, no special macro
Interactions of a String Inspired Graviton Field
We continue to explore the possibility that the graviton in two dimensions is
related to a quadratic differential that appears in the anomalous contribution
of the gravitational effective action for chiral fermions. A higher dimensional
analogue of this field might exist as well. We improve the defining action for
this diffeomorphism tensor field and establish a principle for how it interacts
with other fields and with point particles in any dimension. All interactions
are related to the action of the diffeomorphism group. We discuss possible
interpretations of this field.Comment: 12 pages, more readable, references adde
Phase transition in a static granular system
We find that a column of glass beads exhibits a well-defined transition
between two phases that differ in their resistance to shear. Pulses of
fluidization are used to prepare static states with well-defined particle
volume fractions in the range 0.57-0.63. The resistance to shear is
determined by slowly inserting a rod into the column of beads. The transition
occurs at for a range of speeds of the rod.Comment: 4 pages, 4 figures. The paper is significantly extended, including
new dat
- …