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Abstract
We present a refinement of a recently found gauge–gravity relation between
one-loop effective actions: on the gauge side, for a massive charged scalar in
2d dimensions in a constant maximally symmetric electromagnetic field; on the
gravity side, for a massive spinor in d-dimensional (Euclidean) anti-de Sitter
space. The inclusion of the dimensionally regularized volume of AdS leads to
a complete mapping within dimensional regularization. In even-dimensional
AdS, we acquire a small correction to the original proposal, whereas in odd-
dimensional AdS, the mapping is totally new and subtle, with the ‘holographic
trace anomaly’ playing a crucial role.

PACS numbers: 11.10.Kk, 04.62.+v, 11.15.Kc

Functional determinants of geometric differential operators, such as the Laplacian and
Dirac’s operator, are ubiquitous in mathematical and theoretical physics (cf [1, 2]). In
particular, in quantum field theory, the one-loop effective action is given by the determinant
of the ‘propagating’ differential operator. Exact results for these determinants in gauge theory
date back at least to the works of Heisenberg and Euler and of Weisskopf, for constant
electromagnetic backgrounds. In special gravitational backgrounds, as in anti-de Sitter, the
high degree of symmetry also allows for exact expressions.

Even though such one-loop effective actions have been known for quite some time, it
was only very recently that a remarkable gauge–gravity relation was identified [3]. On the
gauge side, one considers the one-loop effective action for a massive charged scalar in 2d
dimensions in a constant maximally symmetric electromagnetic field, and on the gravity side,
the one-loop effective action for a massive spinor in d-dimensional (Euclidean) anti-de Sitter
space. The observation was inspired by factorization of graviton amplitudes in terms of gauge
amplitudes and the prospects for the inclusion of one-loop effects, while the similarity was
revealed by the presence of Barnes’ multiple gamma function [6, 7]. Possible directions,
in which the observation might be extended, include relaxing the maximal symmetry of the
electromagnetic field or its homogeneity, and considering higher loops. In addition, one might
also contemplate including finite-temperature effects.

1751-8113/10/295401+06$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/43/29/295401
mailto:raros@unab.cl
mailto:danilodiaz@unab.cl
mailto:alejandramontecinos@unab.cl
http://stacks.iop.org/JPhysA/43/295401


J. Phys. A: Math. Theor. 43 (2010) 295401 R Aros et al

Our concern here, however, is with a seemingly overlooked detail, namely that the
mapping is only established for even-dimensional AdS. On the gauge side, as long as the
number of dimensions is twice larger than that of AdS, the effective action will be given in
terms of Barnes’ multiple gamma function. In odd-dimensional AdS, in turn, the renormalized
effective Lagrangian is polynomial in the mass parameter and little hope is left to meet Barnes’
multiple gamma in this case. In this paper we show how to amend this apparent mismatch by
taking into account the dimensionally regularized volume of AdS space.

Gauge side

On the gauge side, one considers a massive (M) charged scalar field φ in flat Euclidean
2d-dimensional space in the constant background of a maximally symmetric electromagnetic
field1. The field strength can be written in block form:

Fμν = f diagd

{(
0 1

−1 0

)}
. (1)

The dramatis persona on the gauge side is the functional determinant arising in the one-loop
effective action

S2d
gauge = ln det{−D2 + M2}. (2)

Standard manipulations lead to an expression in terms of the Green’s function G, schematically
(−D2 + M2)G = −1,

S2d
gauge = −

∫ M2

tr G2d , (3)

where the trace tr means volume integral (large box of length L) of the diagonal entry G2d (x, x).
The heat kernel gives a useful representation of this diagonal entry, and a starting point to deal
with the inherent short-distance divergence:

−
∫ M2

tr G2d = L2d

∫ ∞

0

ds

s

1

(4πs)d

(
f s

sh(f s)

)d

e−sM2
. (4)

The divergence at the lower integration value of the proper-time integral could be cured if the
dimension d were negative enough. This observation is the key to dimensional regularization
where the dimension is D ≡ d − ε and one can work out the value of the effective action in
closed form:

S2D
gauge = −

(
f L2

2π

)D

�(1 − D)

∫ M2

2f

dμ
�

(
D
2 + μ

)
�

(
1 − D

2 + μ
) . (5)

The divergence as D → d comes entirely from the �(1 − D) factor for any integer value of
d, even or odd.

Now, the crucial observation in [3] is related to the presence of Barnes’ multiple gamma
function in the renormalized value of this expression. A quick way to understand the Barnes’
multiple gamma function is to go back to the heat kernel representation and perform a
‘Weierstrass regularization’, that is, subtract successive terms of the Taylor expansion of the
integrand to achieve convergence in the lower integration limit. We stick to the conventions in
[6, 7] for Barnes’ multiple gamma function (A.1), modulo renormalization scheme-dependent

1 We refer to [3] for conventions and further references.
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terms which are polynomial and logarithmic in M (cf [3]), and obtain the finite renormalized
value

S2d
gauge =

(
f L2

2π

)d

· ln �d

(
d

2
+

M2

2f

)
. (6)

Alternatively, expanding in ε and cancelling the pole from �(1 − D) with the linear-in-ε
term in the expansion of the integrand in equation (5), one obtains

S2d
gauge =

(
f L2

2π

)d
(−1)d−1

2(d − 1)!

∫ M2

2f

dμ
�

(
d
2 + μ

)
�

(
1 − d

2 + μ
)

(
ψ

(
d

2
+ μ

)
+ ψ

(
1 − d

2
+ μ

))
+ · · ·

=
(

f L2

2π

)d
(−1)d−1

(d − 1)!

∫ M2

2f

dμ

⎧⎨
⎩

d−2∏
j=0

(
d

2
+ μ − 1 − j

)⎫⎬
⎭ ψ

(
d

2
+ μ

)
+ · · ·

=
(

f L2

2π

)d

· ln �d

(
d

2
+

M2

2f

)
+ · · · . (7)

Any subtraction or renormalization prescription will eventually lead to Barnes’ multiple
gamma, modulo the aforementioned logarithmic and polynomial terms related to a
renormalization scheme ambiguity.

Gravity side

Let us now turn to the gravity side and consider a massive (m) Dirac spinor ψ minimally
coupled to gravity in the Euclidean AdSd background, i.e. hyperbolic space Hd. The dramatis
persona on the gravity side is the functional determinant in the one-loop effective action

Sd
gravity = − ln det{/∇ + m}. (8)

Again, standard manipulations bring in the Green’s function, (/∇ + m)D = −I,

Sd
gravity =

∫ m

trDd , (9)

where now the spinor indices are also traced out.
The spinor propagator in AdSd is a well-known quantity [4], involving Gauss’

hypergeometric function, and its diagonal entry can be worked out in dimensional
regularization

DD(x, x) = − I√
�

(
�

4π

)D/2

�

(
1 − D

2

) �
(

D
2 + m√

�

)
�

(
1 − D

2 + m√
�

) , (10)

with I denoting the identity matrix in spinor indices, whose dimensionality is 2[D/2]. The
analogy with the gauge result is already apparent, but there is a seemingly small mismatch
in the gamma factor: �

(
1 − D

2

)
instead of �(1 − D). This makes a tiny difference when

d = even; both expressions have a pole and the finite piece involves Barnes’ multiple gamma.
However, when d = odd, there is a huge difference and there is no mapping of gauge and
gravity quantities. On the gauge side there is still a pole, but the gravity side is finite in the
limit D → d. Our contribution in this paper is to amend this discrepancy by taking into
account the dimensionally regularized volume of Euclidean AdS which is finite for d = even,
whereas for d = odd one finds the missing pole in the above discussion.

To compute the dimensionally regularized volume of HD, start with the metric

ds2 = R2

r2

[
dr2 +

(1 − r2)2

4
d	2

D−1

]
, (11)
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where R = 1/
√

� is the radius of AdS. The volume is then [5]

vol(HD) = RD 21−D vol(SD−1)

∫ 1

0
dr r−D (1 − r2)D−1

= π
D
2 − 1

2 RD �

(
1

2
− D

2

)
. (12)

Note that the volume has a pole for D → odd and is finite for D → even, so that when
combined with the effective Lagrangian there is always a divergence as D goes to the physical
dimension, even or odd, as in the gauge side. Using Legendre’s duplication formula for the
gamma functions we end up with

SD
gravity = −2[D/2] �(1 − D)

∫ m√
�

dμ
�

(
D
2 + μ

)
�

(
1 − D

2 + μ
) . (13)

Now one can appreciate the mapping to the gauge one-loop effective action (5).

Even dimensions: d = 2n

Let us now go to the physical dimension d = 2n, as first considered in [3]. The volume
asymptotics, D = 2n − ε as ε → 0, is finite:

vol(HD) = V2n + o(1), (14)

with V2n = πn−1/2 R2n �
(

1
2 − n

) = (−1)n πn+1/2

�(n+ 1
2 )

R2n.

Note that our renormalized volume differs by a factor (−1)n from the volume element used
in [3]. We welcome this extra factor for it makes more precise the gauge–gravity mapping.

The important cancelation occurs in the expansion of the effective Lagrangian, very much
as in the gauge side,

S2n
gravity = V2n

(
�

4π

)n
(−2)n+1

(n − 1)!

∫ m√
�

dμ

⎧⎨
⎩

2n−2∏
j=0

(n + μ − 1 − j)

⎫⎬
⎭ψ(n + μ) + · · · . (15)

After including the volume factor and using again the duplication formula for the gamma
function, we finally obtain [3]

S2n
gravity = 2n · ln �2n

(
n +

m√
�

)
, (16)

which ought to be compared with the gauge result (6).

Odd dimensions: d = 2n + 1

This case is qualitatively different from the above; now the volume gets mixed with the
subleading term in the ε−expansion of the effective Lagrangian. The volume asymptotics
behaves as

vol(HD) = 1

ε
L2n+1 + V2n+1 + o(1). (17)

The precise value of the renormalized volume V2n+1 will not be relevant for it only contributes
a polynomial in the mass. The important term is the ‘integrated holographic trace anomaly’
[8–10] which is unambiguously given by L2n+1 = (−1)n 2πn

�(n+1)
R2n+1.

The effective Lagrangian is now finite as D → 2n + 1, and polynomial in m. The
nontrivial part, which eventually leads to Barnes’ multiple gamma function, comes from the
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cancelation of the pole in the volume against the linear-in-ε term in the expansion of the
effective Lagrangian2

S2n+1
gravity = �

(
1
2 − n

)
(−2)nπ

1
2 �(1 + n)

∫ m√
�

dμ
�

(
n + 1

2 + μ
)

�
(

1
2 − n + μ

)

×
(

ψ

(
n +

1

2
+ μ

)
+ ψ

(
1

2
− n + μ

))
+ · · · (18)

= 21−nπ
1
2

�
(

1
2 + n

)
�(1 + n)

∫ m√
�

dμ

⎧⎨
⎩

2n−1∏
j=0

(
n − 1

2
+ μ − j

)⎫⎬
⎭ψ

(
n +

1

2
+ μ

)
+ · · · .

A little algebraic manipulation yields

S2n+1
gravity = 2n · ln �2n+1

(
n +

1

2
+

m√
�

)
. (19)

In all, on the gravity side the one-loop effective action after inclusion of the volume term
in d dimensions, even and odd, reads

Sd
gravity = 2[d/2] · ln �d

(
d

2
+

m√
�

)
(20)

in remarkable correspondence with the gauge one-loop effective action (6) and with d = odd
and d = even on equal footing.
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Appendix. Useful identities

• Integral representation of Barnes’ multiple gamma, which effectively performs the
Weierstrass regularization:

ln �N(w) =
∫ ∞

0

dt

t

⎛
⎝e−wt

N∏
j=1

1

1 − e−aj t

− tN
N−1∑
k=0

(−t)k

k!
BN,k(w) − (−1)N

N !
e−tBN,N(w)

⎞
⎠ , (A.1)

with BN,k(w) being the Bernoulli-type polynomials [6, 7].
• Gamma function, duplication formula

�(z) �

(
z +

1

2

)
= 21−2z �

(
1

2

)
�(2z). (A.2)

• Gamma function, reflection formula

�

(
1

2
+ z

)
�

(
1

2
− z

)
= π

cos πz
. (A.3)

2 An analogous ‘conspiracy’ was also crucial in establishing a holographic formula for functional determinant in
AdS [5].
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