15,352 research outputs found

    Critical State in Thin Anisotropic Superconductors of Arbitrary Shape

    Full text link
    A thin flat superconductor of arbitrary shape and with arbitrary in-plane and out-of-plane anisotropy of flux-line pinning is considered, in an external magnetic field normal to its plane. It is shown that the general three-dimensional critical state problem for this superconductor reduces to the two-dimensional problem of an infinitely thin sample of the same shape but with a modified induction dependence of the critical sheet current. The methods of solving the latter problem are well known. This finding thus enables one to study the critical states in realistic samples of high-Tc superconductors with various types of anisotropic flux-line pinning. As examples, we investigate the critical states of long strips and rectangular platelets of high-Tc superconductors with pinning either by the ab-planes or by extended defects aligned with the c-axis.Comment: 13 pages including 13 figure files in the tex

    Analytic Solution for the Critical State in Superconducting Elliptic Films

    Full text link
    A thin superconductor platelet with elliptic shape in a perpendicular magnetic field is considered. Using a method originally applied to circular disks, we obtain an approximate analytic solution for the two-dimensional critical state of this ellipse. In the limits of the circular disk and the long strip this solution is exact, i.e. the current density is constant in the region penetrated by flux. For ellipses with arbitrary axis ratio the obtained current density is constant to typically 0.001, and the magnetic moment deviates by less than 0.001 from the exact value. This analytic solution is thus very accurate. In increasing applied magnetic field, the penetrating flux fronts are approximately concentric ellipses whose axis ratio b/a < 1 decreases and shrinks to zero when the flux front reaches the center, the long axis staying finite in the fully penetrated state. Analytic expressions for these axes, the sheet current, the magnetic moment, and the perpendicular magnetic field are presented and discussed. This solution applies also to superconductors with anisotropic critical current if the anisotropy has a particular, rather realistic form.Comment: Revtex file and 13 postscript figures, gives 10 pages of text with figures built i

    Meissner-London currents in superconductors with rectangular cross section

    Full text link
    Exact analytic solutions are presented for the magnetic moment and screening currents in the Meissner state of superconductor strips with rectangular cross section in a perpendicular magnetic field and/or with transport current. The extension to finite London penetration is achieved by an elegant numerical method which works also for disks. The surface current in the specimen corners diverges as l^(-1/3) where l is the distance from the corner. This enhancement reduces the barrier for vortex penetration and should increase the nonlinear Meissner effect in d-wave superconductors

    Absolute value preconditioning for symmetric indefinite linear systems

    Full text link
    We introduce a novel strategy for constructing symmetric positive definite (SPD) preconditioners for linear systems with symmetric indefinite matrices. The strategy, called absolute value preconditioning, is motivated by the observation that the preconditioned minimal residual method with the inverse of the absolute value of the matrix as a preconditioner converges to the exact solution of the system in at most two steps. Neither the exact absolute value of the matrix nor its exact inverse are computationally feasible to construct in general. However, we provide a practical example of an SPD preconditioner that is based on the suggested approach. In this example we consider a model problem with a shifted discrete negative Laplacian, and suggest a geometric multigrid (MG) preconditioner, where the inverse of the matrix absolute value appears only on the coarse grid, while operations on finer grids are based on the Laplacian. Our numerical tests demonstrate practical effectiveness of the new MG preconditioner, which leads to a robust iterative scheme with minimalist memory requirements

    Motion of Vacancies in a Pinned Vortex Lattice: Origin of the Hall Anomaly

    Full text link
    Physical arguments are presented to show that the Hall anomaly is an effect of the vortex many-body correlation rather than that of an individual vortex. Quantitatively, the characteristic energy scale in the problem, the vortex vacancy formation energy, is obtained for thin films. At low temperatures a scaling relation between the Hall and longitudinal resistivities is found, with the power depending on sample details. Near the superconducting transition temperature and for small magnetic fields the Hall conductivity is found to be proportional to the inverse of the magnetic field and to the quadratic of the difference between the measured and the transition temperatures.Comment: minor change

    An effective lowest Landau level treatment of demagnetization in superconducting mesoscopic disks

    Full text link
    Demagnetization, which is inherently present in the magnetic response of small finite-size superconductors, can be accounted for by an effective Îş\kappa within a two-dimensional lowest Landau level approximation of the Ginzburg-Landau functional. We show this by comparing the equilibrium magnetization of superconducting mesoscopic disks obtained from the numerical solution of the three-dimensional Ginzburg-Landau equations with that obtained in the ``effective'' LLL approximation.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    A model for the interaction of high-energy particles in straight and bent crystals implemented in Geant4

    Full text link
    A model for the simulation of orientational effects in straight and bent periodic atomic structures is presented. The continuum potential approximation has been adopted.The model allows the manipulation of particle trajectories by means of straight and bent crystals and the scaling of the cross sections of hadronic and electromagnetic processes for channeled particles. Based on such a model, an extension of the Geant4 toolkit has been developed. The code has been validated against data from channeling experiments carried out at CERN

    Symmetry of the remanent state flux distribution in superconducting thin strips: Probing the critical state

    Full text link
    The critical-state in a thin strip of YBaCuO is studied by magneto-optical imaging. The distribution of magnetic flux density is shown to have a specific symmetry in the remanent state after a large applied field. The symmetry was predicted [PRL 82, 2947 (1999)] for any Jc(B), and is therefore suggested as a simple tool to verify the applicability of the critical-state model. At large temperatures we find deviations from this symmetry, which demonstrates departure from the critical-state behavior. The observed deviations can be attributed to an explicit coordinate dependence of jcj_c since both a surface barrier, and flux creep would break the symmetry in a different way.Comment: 5 pages including 5 eps figures, submitted to PR
    • …
    corecore