We introduce a novel strategy for constructing symmetric positive definite
(SPD) preconditioners for linear systems with symmetric indefinite matrices.
The strategy, called absolute value preconditioning, is motivated by the
observation that the preconditioned minimal residual method with the inverse of
the absolute value of the matrix as a preconditioner converges to the exact
solution of the system in at most two steps. Neither the exact absolute value
of the matrix nor its exact inverse are computationally feasible to construct
in general. However, we provide a practical example of an SPD preconditioner
that is based on the suggested approach. In this example we consider a model
problem with a shifted discrete negative Laplacian, and suggest a geometric
multigrid (MG) preconditioner, where the inverse of the matrix absolute value
appears only on the coarse grid, while operations on finer grids are based on
the Laplacian. Our numerical tests demonstrate practical effectiveness of the
new MG preconditioner, which leads to a robust iterative scheme with minimalist
memory requirements