18 research outputs found

    Pilot Situation Awareness and its Implications for Single Pilot Operations: Analysis of a Human-in-the-Loop Study

    Get PDF
    AbstractIn 2012, NASA began exploring the feasibility of single pilot/reduced crew operations in the context of scheduled air carrier operations. The current study examined how important it was for ground-based personnel providing support to single piloted aircraft (ground operators) to have opportunities to acquire situation awareness (SA) prior to being called on to assist an aircraft. We looked at two distinct concepts of operation, which varied in how much information was available to ground operators prior to being called on to assist a critical event (no vs. some Situation Preview). Thirty-five commercial pilots participated in the current study. Results suggested that a ground operators’ lack of initial SA when called on for dedicated assistance is not an issue, at least when the ground operator station displays environmental and systems data which are important to gaining overall SA of the specified aircraft. With appropriate displays, ground operators were able to provide immediate assistance, even if they had minimal SA prior to getting a request

    Application of Human-Autonomy Teaming (HAT) Patterns to Reduce Crew Operations (RCO)

    Get PDF
    Unmanned aerial systems, advanced cockpits, and air traffic management are all seeing dramatic increases in automation. However, while automation may take on some tasks previously performed by humans, humans will still be required to remain in the system for the foreseeable future. The collaboration between humans and these increasingly autonomous systems will begin to resemble cooperation between teammates, rather than simple task allocation. It is critical to understand this human-autonomy teaming (HAT) to optimize these systems in the future. One methodology to understand HAT is by identifying recurring patterns of HAT that have similar characteristics and solutions. This paper applies a methodology for identifying HAT patterns to an advanced cockpit project

    Human Automation Teaming: Lessons Learned and Future Directions

    Get PDF
    Full autonomy seems to be the goal for system developers in almost every area of the economy. However, as we move from automated systems to autonomous systems, designers have needed to insert humans to oversee automation that has traditionally been brittle or incomplete. This creates its own problems as the operator is usually out of the loop when the automation hands over problems that it cannot handle. To better handle these situations, it has been proposed that we develop human automation teams that have shared goals and objectives to support task performance. This paper will describe an initial model of Human Automation Teaming (HAT) which has three elements: transparency, bi-directional communications, and human-directed execution. Transparency in our model is a method for giving insight into the reasoning behind automated recommendations and actions, bi-directional communication allows the operator to communicate directly with the automation, and finally the automation defers execution to the human. The model was implemented through a number of features on an electronic flight bag (EFB) which are described in the paper. The EFB was installed in a mid-fidelity flight simulator and used by 12 airline pilots to support diversion decisions during off-nominal flight scenarios. Pilots reported that working with the HAT automation made diversion decisions easier and reduced their workload. They also reported that the information provided about diversion airports was similar to what they would receive from ground dispatch, thus making coordination with dispatch easier and less time consuming. These HAT features engender more trust in the automation when appropriate, and less when not, allowing improved supervision of automated functions by flight crews

    A Detect and Avoid System in the Context of Multiple-Unmanned Aircraft Systems Operations

    Get PDF
    NASA's Unmanned Aircraft Systems Integration into the National Airspace System (UAS in the NAS) project examines the technical barriers associated with the operation of UAS in civil airspace. For UAS, the removal of the pilot from onboard the aircraft has eliminated the ability of the ground-based pilot in command (PIC) to use out-the-window visual information to make judgements about a potential threat of a loss of well clear with another aircraft. NASA's Phase 1 research supported the development of a Detect and Avoid (DAA) system that supports the ground-based pilot's ability to detect potential traffic conflicts and determine a resolution maneuver, but existing display/alerting requirements did not account for multiple UAS control (1:N). Demands for increased scalability of UAS in the NAS operations are expected to create a need for simultaneous control of UAs, and thus, a new DAA HMI design will likely be necessary. Previous research, however, has found performance degradations as the number of vehicles under operator control has increased. The purpose of the current human-in-the-loop (HITL) simulation was to examine the viability of 1:N operations with the Phase 1 DAA alerting and guidance. Sixteen UAS pilots flew three scenarios with varying number of UAs under their control (1:1, 1:3, 1:5). In addition to their supervisory and sensor mission responsibilities, pilots were to utilize the DAA system to remain DAA well clear (DWC) during scripted conflicts of mixed severity. Measured response times, separation performance, mission task data, and subjective feedback were collected to assess how the multi-UAS control configuration impacted pilots' ability to maintain DAA well clear and perform the mission tasks. Overall, the DAA system proved surprisingly adaptive to multi-UAS control for preventing losses of DAA well clear (LoDWC). The findings suggest that, while multi-UAS operators are able to maintain safe separation (DWC) from other traffic, their ability to efficiently perform missions drastically decreases with their number of controlled vehicles. Pilot feedback indicated that, for this context, the use of automation support tools for completing and managing mission tasks would be appropriate and desired, especially for ensuring efficient use of assets. Finally, human-machine interface (HMI) design considerations for multi-UAS operations are discussed

    A Human-Autonomy Teaming Approach for a Flight-Following Task

    Get PDF
    Managing aircraft is becoming more complex with increasingly sophisticated automation responsible for more flight tasks. With this increased complexity, it is becoming more difficult for operators to understand what the automation is doing and why. Human involvement with increasingly autonomous systems must adjust to allow for a more dynamic relationship involving cooperation and teamwork. As part of an ongoing project to develop a framework for human-autonomy teaming (HAT) in aviation, a part-task study was conducted to demonstrate, evaluate and refine proposed critical aspects of HAT. These features were built into an automated recommender system on a ground station available from previous studies. Participants performed a flight-following task once with the original ground station (i.e., No HAT condition) and once with the HAT features enabled (i.e., HAT condition). Behavioral and subjective measures were collected; subjective measures are presented here. Overall, participants preferred the ground station with HAT features enabled compared to the station without the HAT features. Participants reported that the HAT displays and automation were preferred for keeping up with operationally important issues. Additionally, participants reported that the HAT displays and automation provided enough situation awareness to complete the task and reduced workload relative to the No HAT baseline

    NASA's Single-Pilot Operations Technical Interchange Meeting: Proceedings and Findings

    Get PDF
    Researchers at the National Aeronautics and Space Administration (NASA) Ames Research Center and Langley Research Center are jointly investigating issues associated with potential concepts, or configurations, in which a single pilot might operate under conditions that are currently reserved for a minimum of two pilots. As part of early efforts, NASA Ames Research Center hosted a technical interchange meeting in order to gain insight from members of the aviation community regarding single-pilot operations (SPO). The meeting was held on April 10-12, 2012 at NASA Ames Research Center. Professionals in the aviation domain were invited because their areas of expertise were deemed to be directly related to an exploration of SPO. NASA, in selecting prospective participants, attempted to represent various relevant sectors within the aviation domain. Approximately 70 people representing government, academia, and industry attended. A primary focus of this gathering was to consider how tasks and responsibilities might be re-allocated to allow for SPO

    The Effects of Ultra-Long-Range Flights on the Alertness and Performance of Aviators

    Get PDF
    This investigation assessed the impact of ultra-long-range (ULR) simulator flights, departing either in the morning or late evening, on the alertness and performance of 17 commercial aviators. Immediately prior to and throughout each flight, alertness and performance were assessed via a computerized test of sustained attention, subjective questionnaires, and "hand-flying" tasks. There were fatigue-related effects on the majority of assessments, and the nature of these effects was consistent across the vigilance and self-report measures. However, the operational "hand-flying" manuevers proved insensitive to the impact of fatigue probably due to procedural factors. Regardless, the results of the present study suggest that fatigue associated with prolonged wakefulness in ULR flight operations will interact with flight schedules due to circadian and homeostatic influences. In this study, the pilots departing at night were at a greater initial disadvantage (during cruise) than pilots who departed earlier in the day; whereas those who departed earlier tended to be most impaired towards the end of the flight prior to landing. In real-world operations, airlines should consider the ramifications of flight schedules and what is known about human sleep and circadian rhythms to optimize safety

    Application of Human-Autonomy Teaming (HAT) Patterns to Reduce Crew Operations (RCO)

    Get PDF
    Unmanned aerial systems, robotics, advanced cockpits, and air traffic management are all examples of domains that are seeing dramatic increases in automation. While automation may take on some tasks previously performed by humans, humans will still be required, for the foreseeable future, to remain in the system. The collaboration with humans and these increasingly autonomous systems will begin to resemble cooperation between teammates, rather than simple task allocation. It is critical to understand this human-autonomy teaming (HAT) to optimize these systems in the future. One methodology to understand HAT is by identifying recurring patterns of HAT that have similar characteristics and solutions. This paper applies a methodology for identifying HAT patterns to an advanced cockpit project

    Calibrating LISA Pathfinder raw data into femto-g differential accelerometry

    Get PDF
    LISA Pathfinder is an in-flight test of the local sources of acceleration noise in LISA. The acceleration noise level in LISA Pathfinder is measured by the residual differential acceleration Δg between the two test masses once the coupling to the spacecraft motion has been removed. The full process from raw data to Δg passes through a series of calibration experiments and different data elaboration procedure which are thoroughly used during the mission and represent the baseline for any other further investigation

    SNAPSHOT USA 2019 : a coordinated national camera trap survey of the United States

    Get PDF
    This article is protected by copyright. All rights reserved.With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August - 24 November of 2019). We sampled wildlife at 1509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the USA. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as well as future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.Publisher PDFPeer reviewe
    corecore