A Human-Autonomy Teaming Approach for a Flight-Following Task

Summer L. Brandt
Rickey Russell
San Jose State University/
NASA Ames Research Center

Joel Lachter
Jay Shively
NASA Ames Research Center

Problems with Automation

- Incidents and accidents result from pilots failing to understand increasingly sophisticated aircraft systems
 - These systems are often **brittle** and rarely degrade gracefully
 - Automation helps when all goes well but leaves the human out-of-the-loop when it fails
 - Automation interfaces often lack transparency, not facilitating understanding or tracking of the system
 - Disuse and misuse of automation (miscalibrated trust) have lead to real-world mishaps and tragedies
- Human involvement with increasingly sophisticated automated systems must adjust to allow for a more dynamic relationship involving cooperation and teamwork

Purpose

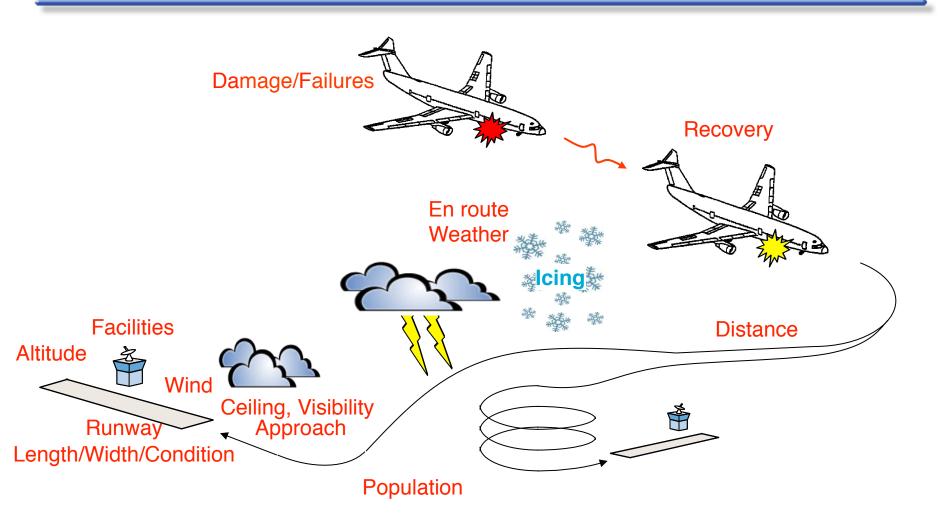
- Part-task study to demonstrate, evaluate and refine proposed tenets of humanautonomy teaming (HAT)
 - Bi-directional communication
 - Transparency
 - Operator-directed interface
- Built on an earlier ground station to minimize development and focused primarily on interactions with one piece of software
- Overall goal is to develop a framework for HAT in aviation and provide guidelines and recommendations for its application

HAT Simulation: Tasks

- Participants: 4 Dispatchers, 2 Pilots
- Participants, with the help of automation, monitored aircraft
 - Alerted pilots when
 - Aircraft was off path or pilot failed to comply with clearances
 - Significant weather events affect aircraft trajectory
 - Pilot failed to act on EICAS alerts
 - Rerouted aircraft when
 - Weather impacted the route
 - System failures or medical events force diversions
- Ran two ~50-min scenarios, containing approximately 40 aircraft and 6 offnominal events
 - One scenario with HAT tools, one scenario without HAT tools

Autonomous Constrainted Flight Planner

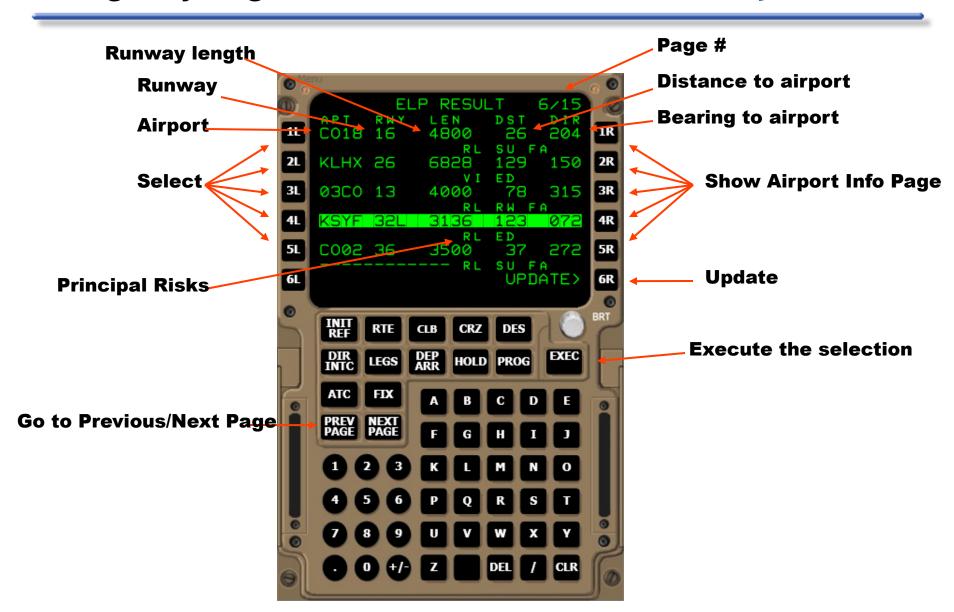
ELP: Emergency Landing Planner (2007-2012)


- Cockpit decision aid
- Route planning for (serious) emergencies
 - control system failures
 - physical damage
 - fires
- Time & safety were dominant considerations

ACFP: Autonomous Constrained Flight Planer (2013-2017)

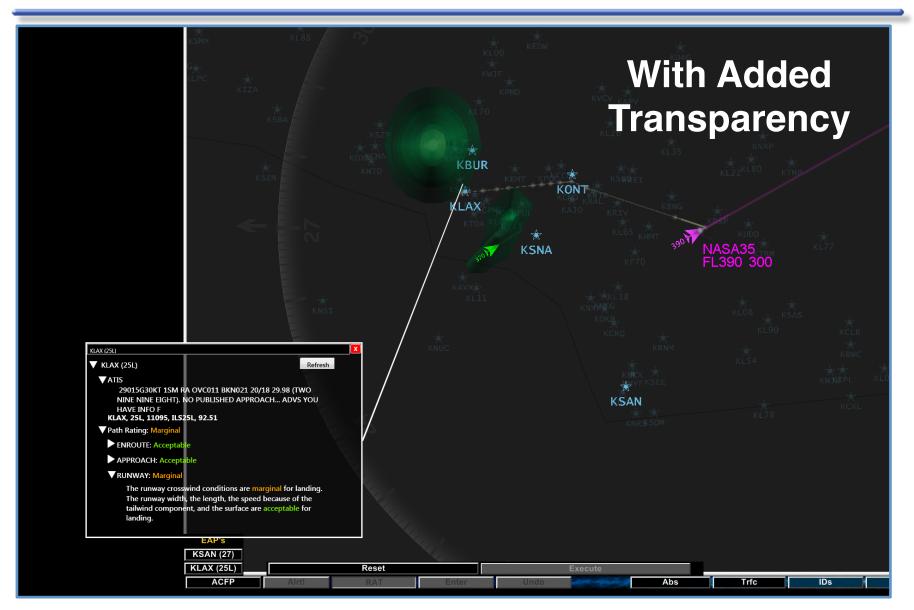
- Ground station decision aid
- Diversion selection, route planning, route evaluation
 - weather diversion
 - medical emergencies
 - less critical system failures

ELP Objective



Find the best landing sites and routes for the aircraft

Emergency Page on the CDU



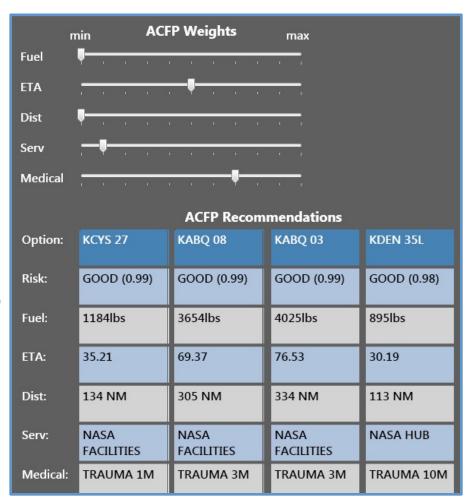
Simulated Ground Station

Building in HAT Tenets to the Ground Station SJSU SAN JOSÉ STATE UNIVERSITY

Building in HAT Tenets to the Ground Station SJSU SAN JOSÉ STATE UNIVERSITY

- **Human-Directed**
 - Operator calls "Plays" to determine who does what

- A play encapsulates a plan for achieving a goal. It includes roles and responsibilities
 - what is the automation going to do
 - what is the operator going to do


NASA35 - Medical Emergency	
	SWITCH STATUS TO MEDICAL
	SUGGEST DIVERT OPTIONS FOR NEAREST SUITABLE
	MAKE RECOMMENDATION TO PILOT
	UPLINK AGREED UPON FLIGHT PLAN
	ADD DETAILS OF ILLNESS TO OPERATOR NOTES
	CONTACT EMS
	CONTACT MAINTENANCE
	CONTACT CUSTOMER SERVICE
	CONTACT SLOT CONTROL
	CONTACT CARGO CONTROL
	ASK IF PILOT NEEDS ADDITIONAL ASSISTANCE

Building in HAT Tenets to the Ground Station SJSU SAN JOSÉ STATE UNIVERSITY

- Transparency
 - Divert reasoning and factor weights are displayed
 - Numeric output from ACFP was found to be misleading by pilots. Display now uses English categorical descriptions.

- **Bi-directional Communication**
 - Operators can change factor weights to match their priorities

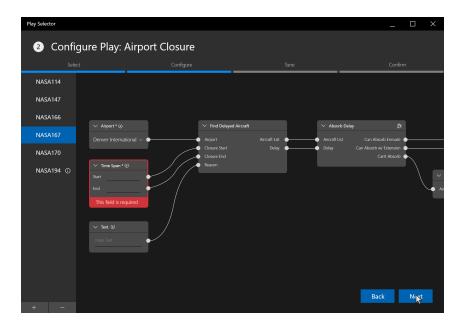
HAT Simulation: Results

- Participants preferred the HAT condition overall (M = 8.5, SD = 0.55)
- HAT displays were preferred with regard to:
 - keeping up with operationally important issues (M = 8.67, SD = 0.52)
 - ensuring the necessary situation awareness for the task (M = 8.67, SD = 0.52)
 - integrating information from a variety of sources (M = 8.67, SD = 0.52)
 - reducing workload necessary for the task (M = 8.33, SD = 0.82)
 - efficiency (M = 8.33, SD = 0.82)
- Participants reported greater confidence that their diversion choice was appropriate in the HAT condition (M = 7.83, SD = 1.47) compared to the No HAT condition (M = 6.33, SD = 2.07; t(5) = 4.39, p = .01)
- ACFP was rated as useful (M = 5.83, SD = 0.82), particularly during emergency situations
 - "Everything is easy and accessible in emergency situations. No need to consult many other programs to get various info."

HAT Simulation: Results

- Supporting Bi-directional Communication
 - ACFP weights
 - improved automation's ability to handle unusual situations (M = 7.83, SD = 1.60)
 - were useful in making divert decisions (M = 8.33, SD = 0.82)
 - were liked (M = 8.33, SD = 1.21)
 - "[the display] gave me the ability to see why, gave me control to change weights in variable(s)"
- Building in Transparency
 - ACFP table
 - was helpful in making divert decisions (M = 7.67, SD = 1.51)
 - was liked (M = 8.33, SD = 1.03)
 - "This [table] is wonderful... You would not find a dispatcher who would just be comfortable with making a decision without knowing why."
- Creating an Operator Directed Interface with Plays
 - Electronic checklist
 - was liked (M = 8.67, SD = 0.52)
 - "This electronic checklist was easier because it was right there on the screen and it eliminated a couple of steps"

HAT Simulation: Summary



- Participants liked where we were headed with the HAT concept
 - Increased Situation Awareness
 - Reduced Subjective Workload
- Things we didn't get quite right
 - Participants didn't always understand what the goal of a play was
 - Annunciations: People liked them but thought there were to many
 - Voice Control: Did not work well. Need a more complete grammar, better recognition
- Things we didn't get to
 - Airlines hate diverts. We need to put in support to help avoid them
 - Plays need more structure (branching logic)
 - Roles and responsibilities need to be more flexible
 - Limited ability to suggest alternatives

Where next?

- Running another part-task study with HAT features implemented on the flight deck
- Developing a software framework for creating HAT Agents

