2,074 research outputs found

    Optimal Investment in the Development of Oil and Gas Field

    Full text link
    Let an oil and gas field consists of clusters in each of which an investor can launch at most one project. During the implementation of a particular project, all characteristics are known, including annual production volumes, necessary investment volumes, and profit. The total amount of investments that the investor spends on developing the field during the entire planning period we know. It is required to determine which projects to implement in each cluster so that, within the total amount of investments, the profit for the entire planning period is maximum. The problem under consideration is NP-hard. However, it is solved by dynamic programming with pseudopolynomial time complexity. Nevertheless, in practice, there are additional constraints that do not allow solving the problem with acceptable accuracy at a reasonable time. Such restrictions, in particular, are annual production volumes. In this paper, we considered only the upper constraints that are dictated by the pipeline capacity. For the investment optimization problem with such additional restrictions, we obtain qualitative results, propose an approximate algorithm, and investigate its properties. Based on the results of a numerical experiment, we conclude that the developed algorithm builds a solution close (in terms of the objective function) to the optimal one

    Parent formulation at the Lagrangian level

    Full text link
    The recently proposed first-order parent formalism at the level of equations of motion is specialized to the case of Lagrangian systems. It is shown that for diffeomorphism-invariant theories the parent formulation takes the form of an AKSZ-type sigma model. The proposed formulation can be also seen as a Lagrangian version of the BV-BRST extension of the Vasiliev unfolded approach. We also discuss its possible interpretation as a multidimensional generalization of the Hamiltonian BFV--BRST formalism. The general construction is illustrated by examples of (parametrized) mechanics, relativistic particle, Yang--Mills theory, and gravity.Comment: 26 pages, discussion of the truncation extended, typos corrected, references adde

    First order parent formulation for generic gauge field theories

    Full text link
    We show how a generic gauge field theory described by a BRST differential can systematically be reformulated as a first order parent system whose spacetime part is determined by the de Rham differential. In the spirit of Vasiliev's unfolded approach, this is done by extending the original space of fields so as to include their derivatives as new independent fields together with associated form fields. Through the inclusion of the antifield dependent part of the BRST differential, the parent formulation can be used both for on and off-shell formulations. For diffeomorphism invariant models, the parent formulation can be reformulated as an AKSZ-type sigma model. Several examples, such as the relativistic particle, parametrized theories, Yang-Mills theory, general relativity and the two dimensional sigma model are worked out in details.Comment: 36 pages, additional sections and minor correction

    Generalized quark-antiquark potential at weak and strong coupling

    Get PDF
    We study a two-parameter family of Wilson loop operators in N=4 supersymmetric Yang-Mills theory which interpolates smoothly between the 1/2 BPS line or circle and a pair of antiparallel lines. These observables capture a natural generalization of the quark-antiquark potential. We calculate these loops on the gauge theory side to second order in perturbation theory and in a semiclassical expansion in string theory to one-loop order. The resulting determinants are given in integral form and can be evaluated numerically for general values of the parameters or analytically in a systematic expansion around the 1/2 BPS configuration. We comment about the feasibility of deriving all-loop results for these Wilson loops.Comment: 43 pages: 15 comprising the main text and 25 for detailed appendice

    Linear broadening of the confining string in Yang-Mills theory at low temperature

    Get PDF
    The logarithmic broadening predicted by the systematic low-energy effective field theory for the confining string has recently been verified in numerical simulations of (2+1)-d SU(2) lattice Yang-Mills theory at zero temperature. The same effective theory predicts linear broadening of the string at low non-zero temperature. In this paper, we verify this prediction by comparison with very precise Monte Carlo data. The comparison involves no additional adjustable parameters, because the low-energy constants of the effective theory have already been fixed at zero temperature. It yields very good agreement between the underlying Yang-Mills theory and the effective string theory.Comment: 10 pages, 3 figures. Version published in JHEP; improved figures 1 and

    Evidence for the role of EPHX2 gene variants in anorexia nervosa.

    Get PDF
    Anorexia nervosa (AN) and related eating disorders are complex, multifactorial neuropsychiatric conditions with likely rare and common genetic and environmental determinants. To identify genetic variants associated with AN, we pursued a series of sequencing and genotyping studies focusing on the coding regions and upstream sequence of 152 candidate genes in a total of 1205 AN cases and 1948 controls. We identified individual variant associations in the Estrogen Receptor-ß (ESR2) gene, as well as a set of rare and common variants in the Epoxide Hydrolase 2 (EPHX2) gene, in an initial sequencing study of 261 early-onset severe AN cases and 73 controls (P=0.0004). The association of EPHX2 variants was further delineated in: (1) a pooling-based replication study involving an additional 500 AN patients and 500 controls (replication set P=0.00000016); (2) single-locus studies in a cohort of 386 previously genotyped broadly defined AN cases and 295 female population controls from the Bogalusa Heart Study (BHS) and a cohort of 58 individuals with self-reported eating disturbances and 851 controls (combined smallest single locus P<0.01). As EPHX2 is known to influence cholesterol metabolism, and AN is often associated with elevated cholesterol levels, we also investigated the association of EPHX2 variants and longitudinal body mass index (BMI) and cholesterol in BHS female and male subjects (N=229) and found evidence for a modifying effect of a subset of variants on the relationship between cholesterol and BMI (P<0.01). These findings suggest a novel association of gene variants within EPHX2 to susceptibility to AN and provide a foundation for future study of this important yet poorly understood condition

    Acceptor binding energies in GaN and AlN

    Full text link
    We employ effective mass theory for degenerate hole-bands to calculate the acceptor binding energies for Be, Mg, Zn, Ca, C and Si substitutional acceptors in GaN and AlN. The calculations are performed through the 6×\times 6 Rashba-Sheka-Pikus and the Luttinger-Kohn matrix Hamiltonians for wurtzite (WZ) and zincblende (ZB) crystal phases, respectively. An analytic representation for the acceptor pseudopotential is used to introduce the specific nature of the impurity atoms. The energy shift due to polaron effects is also considered in this approach. The ionization energy estimates are in very good agreement with those reported experimentally in WZ-GaN. The binding energies for ZB-GaN acceptors are all predicted to be shallower than the corresponding impurities in the WZ phase. The binding energy dependence upon the crystal field splitting in WZ-GaN is analyzed. Ionization levels in AlN are found to have similar `shallow' values to those in GaN, but with some important differences, which depend on the band structure parameterizations, especially the value of crystal field splitting used.Comment: REVTEX file - 1 figur

    Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials.

    Get PDF
    BACKGROUND: Treatment efficacy of physical agents in osteoarthritis of the knee (OAK) pain has been largely unknown, and this systematic review was aimed at assessing their short-term efficacies for pain relief. METHODS: Systematic review with meta-analysis of efficacy within 1-4 weeks and at follow up at 1-12 weeks after the end of treatment. RESULTS: 36 randomised placebo-controlled trials (RCTs) were identified with 2434 patients where 1391 patients received active treatment. 33 trials satisfied three or more out of five methodological criteria (Jadad scale). The patient sample had a mean age of 65.1 years and mean baseline pain of 62.9 mm on a 100 mm visual analogue scale (VAS). Within 4 weeks of the commencement of treatment manual acupuncture, static magnets and ultrasound therapies did not offer statistically significant short-term pain relief over placebo. Pulsed electromagnetic fields offered a small reduction in pain of 6.9 mm [95% CI: 2.2 to 11.6] (n = 487). Transcutaneous electrical nerve stimulation (TENS, including interferential currents), electro-acupuncture (EA) and low level laser therapy (LLLT) offered clinically relevant pain relieving effects of 18.8 mm [95% CI: 9.6 to 28.1] (n = 414), 21.9 mm [95% CI: 17.3 to 26.5] (n = 73) and 17.7 mm [95% CI: 8.1 to 27.3] (n = 343) on VAS respectively versus placebo control. In a subgroup analysis of trials with assumed optimal doses, short-term efficacy increased to 22.2 mm [95% CI: 18.1 to 26.3] for TENS, and 24.2 mm [95% CI: 17.3 to 31.3] for LLLT on VAS. Follow-up data up to 12 weeks were sparse, but positive effects seemed to persist for at least 4 weeks after the course of LLLT, EA and TENS treatment was stopped. CONCLUSION: TENS, EA and LLLT administered with optimal doses in an intensive 2-4 week treatment regimen, seem to offer clinically relevant short-term pain relief for OAK

    Molecular beam epitaxy as a growth technique for achieving free-standing zinc-blende GaN and wurtzite AlxGa1-xN

    Get PDF
    Currently there is a high level of interest in the development of ultraviolet (UV) light sources for solid state lighting, optical sensors, surface decontamination and water purification. III-V semiconductor UV LEDs are now successfully manufactured using the AlGaN material system; however, their efficiency is still low. The majority of UV LEDs require AlxGa1-xN layers with compositions in the mid-range between AlN and GaN. Because there is a significant difference in the lattice parameters of GaN and AlN, AlxGa1-xN substrates would be preferable to those of either GaN or AlN for many ultraviolet device applications. However, the growth of AlxGa1-xN bulk crystals by any standard bulk growth techniques has not been developed so far. There are very strong electric polarization fields inside the wurtzite (hexagonal) group III-nitride structures. The charge separation within quantum wells leads to a significant reduction in the efficiency of optoelectronic device structures. Therefore, the growth of non-polar and semi-polar group III-nitride structures has been the subject of considerable interest recently. A direct way to eliminate polarization effects is to use non-polar (001) zinc-blende (cubic) III-nitride layers. However, attempts to grow zinc-blende GaN bulk crystals by anystandard bulk growth techniques were not successful. Molecular beam epitaxy (MBE) is normally regarded as an epitaxial technique for the growth of very thin layers with monolayer control of their thickness. In this study we have used plasma-assisted molecular beam epitaxy (PA MBE) and have produced for the first time free-standing layers of zinc-blende GaN up to 100 μm in thickness and up to 3-inch in diameter. We have shown that our newly developed PA-MBE process for the growth of zinc-blende GaN layers can also be used to achieve free-standing wurtzite AlxGa1-xN wafers. Zinc-blende and wurtzite AlxGa1-xN polytypes can be grown on different orientations of GaAs substrates - (001) and (111)B respectively. We have subsequently removed the GaAs using a chemical etch in order to produce free-standing GaN and AlxGa1-xN wafers. At a thickness of ∼30 μm, free-standing GaN and AlxGa1-xN wafers can easily be handled without cracking. Therefore, free-standing GaN and AlxGa1-xN wafers with thicknesses in the 30–100 μm range may be used as substrates for further growth of GaN and AlxGa1 xN-based structures and devices. We have compared different RF nitrogen plasma sources for the growth of thick nitride AlxGa1-xN films including a standard HD25 source from Oxford Applied Research and a novel high efficiency source from Riber. We have investigated a wide range of the growth rates from 0.2 to 3 μm/h. The use of highly efficient nitrogen RF plasma sources makes PA-MBE a potentially viable commercial process, since free-standing films can be achieved in a single day. Our results have demonstrated that MBE may be competitive with the other group III-nitrides bulk growth techniques in several important areas including production of free-standing zinc-blende (cubic) (Al)GaN and of free-standing wurtzite (hexagonal) AlGaN
    corecore