1,419 research outputs found

    PAH Strength and the Interstellar Radiation Field around the Massive Young Cluster NGC3603

    Full text link
    We present spatial distribution of polycyclic aromatic hydrocarbons and ionized gas within the Galactic giant HII region NGC3603. Using the IRS instrument on board the Spitzer Space Telescope, we study in particular the PAH emission features at ~5.7, 6.2, 7.7, 8.6, and 11.3um, and the [ArII] 6.99um, [NeII] 12.81um, [ArIII] 8.99um, and [SIV] 10.51um forbidden emission lines. The observations probe both ionized regions and photodissociation regions. Silicate emission is detected close to the central cluster while silicate absorption is seen further away. We find no significant variation of the PAH ionization fraction across the whole region. The emission of very small grains lies closer to the central stellar cluster than emission of PAHs. The PAH/VSG ratio anticorrelates with the hardness of the interstellar radiation field suggesting a destruction mechanism of the molecules within the ionized gas, as shown for low-metallicity galaxies by Madden et al. (2006).Comment: Accepted for publication in ApJ. Corrected typo

    Elemental Abundances of Blue Compact Dwarfs from mid-IR Spectroscopy with Spitzer

    Get PDF
    We present a study of elemental abundances in a sample of thirteen Blue Compact Dwarf (BCD) galaxies, using the \sim10--37μ\mum high resolution spectra obtained with Spitzer/IRS. We derive the abundances of neon and sulfur for our sample using the infrared fine-structure lines probing regions which may be obscured by dust in the optical and compare our results with similar infrared studies of starburst galaxies from ISO. We find a good correlation between the neon and sulfur abundances, though sulfur is under-abundant relative to neon with respect to the solar value. A comparison of the elemental abundances (neon, sulfur) measured from the infrared data with those derived from the optical (neon, sulfur, oxygen) studies reveals a good overall agreement for sulfur, while the infrared derived neon abundances are slightly higher than the optical values. This indicates that either the metallicities of dust enshrouded regions in BCDs are similar to the optically accessible regions, or that if they are different they do not contribute substantially to the total infrared emission of the host galaxy.Comment: 11 pages, 6 figures, accepted by Ap

    Chemical composition and mixing in giant HII regions: NGC3603, 30Doradus, and N66

    Get PDF
    We investigate the chemical abundances of NGC3603 in the Milky Way, of 30Doradus in the Large Magellanic Cloud, and of N66 in the Small Magellanic Cloud. Mid-infrared observations with the Infrared Spectrograph onboard the Spitzer Space Telescope allow us to probe the properties of distinct physical regions within each object: the central ionizing cluster, the surrounding ionized gas, photodissociation regions, and buried stellar clusters. We detect [SIII], [SIV], [ArIII], [NeII], [NeIII], [FeII], and [FeIII] lines and derive the ionic abundances. Based on the ionic abundance ratio (NeIII/H)/(SIII/H), we find that the gas observed in the MIR is characterized by a higher degree of ionization than the gas observed in the optical spectra. We compute the elemental abundances of Ne, S, Ar, and Fe. We find that the alpha-elements Ne, S, and Ar scale with each other. Our determinations agree well with the abundances derived from the optical. The Ne/S ratio is higher than the solar value in the three giant HII regions and points toward a moderate depletion of sulfur on dust grains. We find that the neon and sulfur abundances display a remarkably small dispersion (0.11dex in 15 positions in 30Doradus), suggesting a relatively homogeneous ISM, even though small-scale mixing cannot be ruled out.Comment: Accepted for submission to ApJ. The present version replaces the submitted one. Changes: new title, new figure, the text was modified in the discussio

    OTA-Studie: A New Technological Era for American Agriculture

    Get PDF

    Die Monte-Carlo Berechnung von Quotienten in der Reaktorphysik

    Get PDF

    Indomethacin decreases viscosity of gallbladder bile in patients with cholesterol gallstone disease

    Get PDF
    There is experimental evidence that inhibition of cyclooxygenase with nonsteroidal anti-inflammatory drugs may decrease cholesterol gall-stone formation and mitigate biliary pain in gall-stone patients. The mechanisms by which NSAIDs exert these effect are unclear. In a prospective, controlled clinical trial we examined the effects of oral indomethacin on the composition of human gall-bladder bile. The study included 28 patients with symptomatic cholesterol or mixed gallstones. Of these, 8 were treated with 3 × 25 mg indomethacin daily for 7 days prior to elective cholecystectomy while 20 received no treatment and served as controls. Bile and tissue samples from the gallbladder were obtained during cholecystectomy. Indomethacin tissue levels in the gallbladder mucosa, as assessed by HPLC, were 1.05±0.4 ng/mg wet weight, a concentration known to inhibit effectively cyclooxygenase activity. Nevertheless, no differences between the treated and untreated groups were found in the concentrations of biliary mucus glycoprotein (0.94±0.27 versus 0.93±0.32 mg/ml) or total protein (5.8±0.9 versus 6.4±1.3 mg/ml), cholesterol saturation (1.3±0.2 versus 1.5±0.2), or nucleation time (2.0±3.0 versus 1.5±2.0 days). However, biliary viscosity, measured using a low-shear rotation viscosimeter, was significantly lower in patients receiving indomethacin treatment (2.9±0.6 versus 5.6±1.2 mPa.s; P < 0.02). In conclusion, in man oral indomethacin decreases bile viscosity without alteration of bile lithogenicity or biliary mucus glycoprotein content. Since mucus glycoproteins are major determinants of bile viscosity, an alteration in mucin macromolecular composition may conceivably cause the indomethacin-induced decrease in biliary viscosity and explain the beneficial effects of nonsteroidal anti-inflammatory drugs in gallstone disease
    corecore