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Abstract

An elementary pseudo random number generator for isotropically distributed

unit vectors in 3-dimensional space has been tested for bias. This generator

uses the IBM-supplied routine RANDU and a transparent rejection technique.

The tests show clearly that non-randomness in the pseudo random numbers

genera ted by the primary IBM generator leads to bias in the order of I percent

in estimates obtained from the secondary random number generator. FORTRAN

listings of 4 variants of the random number generator called by a simple test

programme and output listings are Included for direct reference.

Nachweis erheblicher systematischer Fehler (Bias) bei einern elementaren

Zufallszahlen-Generator

Zusammenfassung

Es wurde die Erwartungstreue eines elementaren Zufallszahlen-Generators

überprüft. Dieser Generator, mit dem normierte, im 3-dimensionalen Raum

isotrop verteilte Richtungsvektoren erzeugt werden sollen, benutzt die IBM­

Routine RANDU und ein übersichtliches Verwerfungsverfahren. Die Testrech­

nungen zeigen eindeutig, daß Abweichungen von reiner Zufälligkeit in der

Folge von Pseudo-Zufallszahlen aus dem primären IBM-Generator RANDU beim

abgeleiteten Zufallszahlen-Generator für bestimmte Schätzungen zu systema­

tischen Fehlern (Bias) in der Größenordnung von I Prozent führen. Teil dieses

Berichts sind FORTRAN-Listen für 4 Varianten des Zufallszahlen-Generators,

der von einern einfachen Testprogramrn aufgerufen wird, sowie die Ausgabe­

protokolle der Testserien.
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An elementary pseudo random number generator for

isotropically distributed unit vectors in 3-dimensional

space has been tested for bias. This generator uses the

IBM-supplied routine RANDU and a transparent rejection

technique. The tests show clearly that non-randomness

in the pseudo random numbers genera ted by the primary

IBM generator leads to bias in the order of 1 percent

in estimates obtained from the secondary random number

generator. FORTRAN listings of 4 variants of the random

number generator calied by a simple test programme and

output listings are included for direct reference.
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1. Introduction.

Monte Carlo techniques have been popular in reactor neutron physics

calculations in situations where diffusion theory is not accurate enough

and the geometry too complicated for transport codes. Meanwhile the

performance of 2-dimensional neutronic transport codes has been improved

considerably, reducing the field of Monte Carlo applications.

But, in reactor technology neutron transport is not the only area of

Monte Carlo application. The response surface method, used in reactor

safety research, takes an approximate response surface equation as a

fast-running substitute for the accurate response of a complex safety

code to input parameter vectors. Conventional Monte Carlo techniques

are, then, used to sampie repestedly input vectors from sn assumed

probability distribution, evaluate the approximate responses, snd obtain

finally an estimate of the probability distribution of the response in

form of a histogram (or a set of moments) /1/. The results thus obtained

depend on several factors: the goodness of fit of the response function

approximation in the region of concern, the sampie size, the use of

special sampling techniques (e.g. Latin hypercube sampling), and finally

on the properties of the random number generator (RNG).

Another typical Monte CarIo application, also in reactor safety

research is fault tree evaluation by simulation, in cases where

analytical methods are not available. Here too one must rely on a

reasonable behaviour of the RNGs used. Therefore, it seems appropriate

to communicate, as a general warning, adverse experience originating

from a neutron transport application.

RNGs for sampling from arbitrary distributions can be realized by

several means, e.g. transformation, rejection and special techniques.

The common feature of all these techniques is that they use an input

stream of values from a primsry RNG, usually supplied with the computer

software. This RNG yields uniformly distributed values in the open

interval (0., 1.). They must be sufficiently random for all practical

applications. If this cannot be assured then all derived results may be

questioned.
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It has been reeognized long aga that RNGs ean be demonstrated to be

far from perfeet /2/. On the other hand, the authors have, as many other

praetitioners, believed that, at least for the established RNGs, their

imperfeetions ean be demonstrated only by sophistieated mathematieal

methods, based on the theory of numbers or similar tools. Therefore, we

expeeted that straight-forward applieations should not show any effeets

eomparable to the inevitable statistieal errors, known to deerease with

the square root of the sampie size. This eonvietion got lost, when one

of us (V. B.) investigated neutron transport in an anisotropie medium

using a modified version of the Monte Carlo neutron transport code

KAMCCO /3/.

In addition to the expeeted anisotropy of the z-direetion versus the

transversal direetions the results showed also a marked anisotropy in

the (x,y)-plane not explainable by any feature of the physieal model.

After some seareh, in whieh eoding errors, espeeially in the

ASSEMBLER versions of RNGs and truneation effeets were suspeeted, we

reeognized that a seeondary, derived RNG used for generating isotropi­

eally distributed unit veetors in 3-dimensional spaee was very sensitive

to the inherent weakness of the IBM-supplied primary RNG RANDU/4/.

2. Speeifieation of the RNG tested.

In 3-dimensional spaee the marginal distribution for eaeh eomponent of

isotropieally distributed veetors (normalized to unit length) is uniform

in the interval (-1.0, 1.0). The projeetion of such veetors into any

2-dimensional plane has an isotropie distribution of directions in this

plane. This leads to a simple reeipe for the pertinent RNG of pseudo

random vectors (X,Y,Z) :

Step 1: Sampie one eomponent, e.g. Z, from the uniform distribution in

the interval (-1.0, 1.0), using RANDU.

Step 2: Sampie similarly the remaining components X, Y.

Step 3: If the point (X,Y) is inside a circular disk of unit radius,

then continuej else return to step 2 (This rejection technique

has an efficieney of 78.5 percent).
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Step 4: Normalize the projection (X,Y) sueh that the complete veetor

(X,Y,Z) gets unit normalization.

With an ideal primary RNG this seeondary RNG should perform very weIl.

For one 3-component vector an average of only 3.55 calls of the primary

RNG and one eall of the SQRT function are needed.

3. Test procedure, including variants of the RNG.

The marginal distributions of the absolute values of each vector

eomponent are uniform on the interval (0., 1.) with a mean of 0.50 .

This was taken as a criterion for the test programmes reproduced in the

Appendix. The results given are deviations in percentsfor the estimated

mean absolute value of all 3 vector components. In addition, these

errors have been converted to standard deviations to show their

significanee. Although the IBM-supplied RNG RANDU yields single

preeision values only, we have employed double precision throughout the

test programmes to eliminate any possible truncation effeet. For each

test case an adequate sampIe size of 100,000 realisations and a sequence

of 10 runs was chosen to obtain significant results.

Case A of our test programme is the referenee ease, eoded as explained

above. The eases B, C, and D eaeh contain one modification versus the

referenee case. Case A (cf. Table 1) shows over 10 runs an average bias

for the x-eomponent of .49 percent, and a bias of -.62 percent for the

z-eomponent. These values are quite high and look significant, corres­

ponding.to 2.7 and -3.4 (single run) standard deviations, respeetively.

Throughout the series of 10 runs there is no change of sign in the

errors for these 2 components. As to the estimates for the y-eomponent,

the registered average deviation of .15 pereent corresponding to .79

standard deviations is significantly smaller. The sign of the error is

positive in 9 out of 10 runs, indieating bias also for this component.

But here a more eareful analysis would be necessary to exclude pure

coincidence.



DEMONSTRATION OF BIASSED R.N.G. CASE A

SAMPLE SIZE: 100000, RUNS: 10

BIAS (PCT.) FOR BIAS (ST. DEV.) FOR

RUN X Y Z X Y Z

1 0.548 -0.139 -0.480 3.00 -0.76 -2.63

2 0.665 0.100 -0.839 3.64 0.55 -4.61

3 0.328 0.218 ";0.440 1. 79 1.19 -2.42

4 0.616 0.153 -0.587 3.38 0.84 -3.23

5 0.501 0.098 -0.604 2.74 0.54 -3.31
I.n

6 0.319 0.380 -0.600 1. 75 2.08 -3.29

7 0.352 0.011 -0.448 1.93 0.06 -2.46

8 0.808 0.022 -0.809 4.42 0.12 -4.45

9 0.349 0.291 -0.706 1.90 1.59 -3.87

10 0.413 0.314 -0.667 2.26 1.72 -3.66

Table 1. Results for reference case A.



DEMONSTRATION OF BIASSED R.N.G. CASE B

SAMPLE SIZE: 100000, RUNS: 10

BIAS (PCT.) FOR BIAS (ST. DEV.) FOR

RUN X Y Z X Y Z

1 0.638 -0.087 -0.483 3.50 -0.48 -2.65

2 0.838 -0.003 -0.838 4.58 -0.02 -4.60

3 0.519 0.183 -0.440 2.85 1.00 -2.42

4 0.707 0.144 -0.588 3.88 0.79 -3.23

5 0.526 0.212 -0.604 2.88 1.16 -3.32
'"

6 0.477 0.345 -0.599 2.62 1.89 -3.29

7 0.490 -0.051 -0.449 2.68 -0.28 -2.46

8 0.906 0.015 -0.808 4.96 0.08 -4.44

9 0.432 0.306 -0.706 2.36 1.68 -3.87

10 0.619 0.220 -0.668 3.38 1.21 -3.67

Table 2. Results of test series B.
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For Case B the order, in which vector components are determined, has

been changed. The z-component is selected after the (x,y)-direction has

been determined. Note, that under these circumstances the random numbers

used to determine X, Y, Z are always in sequence, whereas in the

reference Case A the rejection technique for X, Y sometimes breaks up

this triplet into one isolated random number (for Z) and a doublet (for

X, Y), with an even number of rejected random numbers in between. The

results (cf. Table 2) seem to indicate that the behaviour of the

modified RNG becomes worse for the x-component. In terms of standard

deviations the average errors of the x-, y-, aud z-components become

3.4, .70, and -3.4, respectively. For reasons unexplained, the y-compo­

neut shows the best behaviour of all 4 cases, considering not only.the

magnitude of errors but also the higher number of sign changes.

Fol1owing a suggestion by E. Gelbard /5/, we have next attempted to

decouple somewhat the selection of random numbers used for generating

the z-component and the (x,y)-pair, respectively. For Case C this is

done by inserting one blind call to the primary RNG RANDU after

determining the z-component. Table 3 shows no qualitative changes, in

comparison with the reference Case A. The mean deviation in the x-compo­

nent, .50 percent or 2.8 standard deviations, and the corresponding

value for the z-component, -.61 percent or -3.4 standard deviations,

stay practically unchanged. Note that through the loop the pairs of ran­

dom numbers used for the (x,y)-combination of one vector and the random

numbers used for the z-component of the following· vector still form

triplet sequences.

Only the last Case D shows a significant improvement. For this case a

blind ca11 of the primary RNG RANDU has been inserted before determining

the z-component of the random vectors. Now (cf. Table 4) the mean errors

for the x- and z-components are reduced to .19 percent or 1.1 standard

deviations and .03 percent or .14 standard deviations, respectively. The

corresponding value of -.19 percent (or -1.1 standard deviations) for

the y-component seems to indicate that the bias has been partially

shifted to this component. But to corroborate this evidence a much more

detailed analysis would be necessary.



DEMONSTRATION OF BIASSEDR.N.G. CASE C

SAMPLE SIZE: 100000, RUNS: 10

BIAS (PCT.) FOR BIAS (ST. DEV.) FOR

RUN X Y Z X Y Z

1 0.418 0.212 -0.574 2.29 1.16 -3.15

2 0.251 0.183 -0.352 1.38 1.00 -1.93

3 0.534 0.037 -0.409 2.93 0.20 -2.25

4 0.302 0.416 -0.517 1.66 2.28 -2.85

5 0.540 0.419 -0.892 2.95 2.29 -4.90 r
CX>

6 0.418 0.132 -0.455 2.29 0.72 -2.50 r

7 0.613 0.029 -0.664 3.36 0.16 -3.64

8 0.701 0.048 -0.670 3.83 0.26 -3.69

9 0.553 0.240 -0.881 3.03 1.31 -4.83

10 0.704 -0.110 -0.681 3.85 -0.60 -3.73

Table 3. Results of test series C.



DEMONSTRATION OF BIASSED R.N.G. CASE D

SAMPLE SIZE: 100000, RDNS: 10

BIAS (PCT.) FOR BIAS (ST. DEV.) FOR

RDN X y Z X y Z

1 0.139 -0.328 0.200 0.76 -1.80 1.10

2 0.072 -0.058 -0.006 0.40 -0.32 -0.04

3 0.177 -0.346 0.166 0.97 -1.90 0.91

4 0.019 -0.047 0.132 0.11 -0.26 0.73

5 0.068 0.135 -0.202 0.37 0.74 -1.11
-0

6 0.322 -0.005 -0.293 1.77 -0.03 -1.61

7 0.328 -0.378 0.052 1. 79 -2.07 0.29

8 0.152 -0.328 0.195 0.84 -1. 79 1.07

9 0.221 -0.225 -0.016 1.21 -1.24 -0.09

10 0.438 -0.342 0.031 2.40 -1.87 0.17

Table 4. Results of test series D.
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4. Conclusions.

The sampie calculations done for this communication demonstrate very

clearly that non-randomness in the pseudo random numbers generated by a

standard primary RNG like IBM's RANDU can easily lead to bias in the

order of 1 percent in estimates from secondary RNGs. This is much more

than can be tolerated. We also see, from the Case D data, which

direction to take in order to overcome such an effect, at least for this

special application. But we are left with a very uneasy feeling, what

tricks any RNG may play in situations which are less transparent.

What we really need, is not a RNG which has passed certain statistical

tests for randomness; it may fail in the very next one. Instead we would

need a RNG, which could be proved to show approximate randomness by some

practical standard. By now, sufficient mathematica1 tools should be

available e.g. in the theory of numbers, the theory of programme

complexity, and in tools usually employed to develop cryptographic

algorithms.

We want to close with one short remark. It seems to have been widely

accepted that primary RNGs should be extremely fast-running. RANDU, like

many standard generators, is of the congruentia1 type. Starting with an

arbitrary odd integer N(O) for initialisation, a sequence of pseudo

random odd integers N(i) is genera ted by the recursive relation

N(i+1) = A * N(i) modulo (2**31),

with A = 65539 = 2**16 + 3.

for i=0,1,2, ...

These pseudo random integers are then normalized. Such procedures are

extremely simple, which also means that their programme complexity is

very low. Therefore, we may suspect that the generated sequence is far

from random /6/. Yet, the use of such extremely simple, fast-running

procedures seems to be completely unnecessary. For most realistic Monte

CarIo applications a break-down of the computer times shows that only a

very minor part is used in calls of the primary RNG. This means that

introducing more complex primary RNGs will in most cases not affect

adversely the performance of Monte Carlo programmes.
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6. Appendix: Listings of FORTRAN test programmes.

C TEST-PROGRAMME FOR CRECKING BIAS IN TRE ABSOLUTE VALUES
C OF TRE COMPONENTS OF VECTORS INTENDED TO BE UNIFORMLY
C DISTRIBUTED ON TRE 3-DlMENSIONAL UNIT SPRERE.
C
C REFERENCE CASE A.
C

REAL*8 UNIT/1./,TWO/2./,HALF/.5/,X,Y,Z,SUMX,SUMY,SUMZ,VARX,VARY,
+ VARZ,DEVX,DEVY,DEVZ,RAND,TERM

IA = 1
RAND = O.

C RANDU-ROUTlNE INITIALIZED
ITOT = 100000
NRUN = 10
WRITE (6,1000) ITOT,NRUN
ICONT = 1

100 SUMX = o.
SUMY = O.
SUMZ = O.
VARX = O.
VARY = O.
VARZ = O.
DO 300 I=l,ITOT

CALL RANDU (IA,IB,RAND)
IA = IB
Z = TWO*RAND-UNIT

C Z UNIFORM IN (-1.,1.)
200 CALL RANDU (IA,IB,RAND)

IA = IB
X = TWO*RAND-UNIT
CALL RANDU (IA,IB,RAND)
IA = IB
Y = TWO*RAND-UNIT
TERM = X**2+Y**2
IF (TERM.GT.UNIT) GOTO 200

C X,Y UNIFORM IN UNIT DISK
TERM = DSQRT«UNIT-Z**2)/TERM)
X = X*TERM
Y = Y*TERM

C X,Y NORMALIZED
SUMX = SUMX+DABS(X)
VARX = VARX+X**2
SUMY = SUMY+DABS(Y)
VARY = VARY+Y**2
SUMZ = SUMZ+DABS(Z)

300 VARZ = VARZ+Z**2
TERM = DFLOAT(ITOT)
SUMX = SUMX/TERM
SUMY = SUMY/TERM
SUMZ = SUMZ/TERM

C MEAN ABSOLUTE VALUES OF VECTOR COMPONENTS
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VARX = DSQRT((VARX/TERM-SUMX**2)/TERM)
VARY = DSQRT((VARY/TERM-SUMY**2)/TERM)
VARZ = DSQRT((VARZ/TERM-SUMZ**2)/TERM)

C STANDARD DEVIATIONS OF ESTlMATES
SUMX = (SUMX-HALF)/HALF
SUMY = (SUMY-HALF)/HALF
SUMZ = (SUMZ-HALF)/HALF

C RELATIVE DEVIATIONS OF ESTlMATES
DEVX = (SUMX*HALF)/VARX
DEVY = (SUMY*HALF)/VARY
DEVZ = (SUMZ*HALF)/VARZ

C NORMALIZED DEVIATIONS OF ESTlMATES
WRITE (6,2000) ICONT,SUMX,SUMY,SUMZ,DEVX,DEVY,DEVZ
ICONT = ICONT+1
IF (ICONT.LE.NRUN) GOTO 100
STOP

1000 FORMAT ('0'/'0'/'O'/'0'/'O'20X,'DEMONSTRATION OF BIASSED R.N.G. '
+ " CASE A' /'0' ,20X, 'SAMPLE SIZE: ',18,', RUNS:',
+ 14/1X/'O',26X,'BIAS (PCT.) FOR' ,17X,'BIAS (ST. DEV.) FOR'
+ /' 0' , 13X, 'RUN' , 7X, 'X' ,9X, 'Y' ,9X,' Z' , 13X, 'X' ,9X, 'Y' ,9X,
+ 'Z'/lX)

2000 FORMAT ('O',I1S,lX,2P3F10.3,3X,OP3F10.2)
END

C TEST-PROGRAMME FOR CHECKING BIAS IN THE ABSOLUTE VALUES
C OF THE COMPONENTS OF VECTORS INTENDED TO BE UNIFORMLY
C DISTRIBUTED ON THE 3-DlMENSIONAL UNIT SPHERE.
C
C CASE B, Z-COMPONENT AFTER X, Y.
C

REAL*8 UNIT/1./,TWO/2./,HALF/.S/,X,Y,Z,SUMX,SUMY,SUMZ,VARX,VARY,
+ VARZ ,DEVX, DEVY ,DEVZ ,RAND, TERM

IA = 1
RAND = O.

C RANDU-ROUTlNE'INITIALIZED
ITOT = 100000
NRUN = 10
WRITE (6,1000) ITOT,NRUN
ICONT = 1

100 SUMX = O.
SUMY = O.
SUMZ = O.
VARX = O.
VARY = O.
VARZ = O.
DO 300 1=1, ITOT

200 CALL RANDU (IA,IB,RAND)
IA = IB
X = TWO*RAND-UNIT
CALL RANDU (IA,IB,RAND)
IA = IB
Y = TWO*RAND-UNIT
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TERM = X**2+Y**2
IF (TERM.GT.UNIT) GOTO 200

C X,Y UNIFORM IN UNIT DISK
CALL RANDU (IA,IB,RAND)
IA = IB
Z = TWO*RAND-UNIT

C Z UNIFORM IN (-1.,1.)
TERM = DSQRT((UNIT-Z**2)/TERM)
X = X*TERM
Y = Y*TERM

C X,Y NORMALIZED
SUMX =SUMX+DABS(X)
VARX = VARX+X**2
SUMY = SUMY+DABS(Y)
VARY = VARY+Y**2
SUMZ = SUMZ+DABS(Z)

300 VARZ = VARZ+Z**2
TERM = DFLOAT(ITOT)
SUMX = SUMX/TERM
SUMY = SUMY/TERM
SUMZ = SUMZ/TERM

C MEAN ABSOLUTE VALUES OF VECTOR COMPONENTS
VARX = DSQRT((VARX/TERM-SUMX**2)/TERM)
VARY = DSQRT((VARY/TERM-SUMY**2)/TERM)
VARZ = DSQRT((VARZ/TERM-SUMZ**2)/TERM)

C STANDARD DEVIATIONS OF ESTlMATES
SUMX = (SUMX-HALF)/HALF
SUMY = (SUMY-HALF)/HALF
SUMZ = (SUMZ-HALF)/HALF

C RELATIVE DEVIATIONS OF ESTlMATES
DEVX = (SUMX*HALF)/VARX
DEVY = (SUMY*HALF)/VARY
DEVZ = (SUMZ*HALF)/VARZ

C NORMALIZED DEVIATIONS OF ESTlMATES
WRITE (6,2000) ICONT,SUMX,SUMY,SUMZ,DEVX,DEVY,DEVZ
ICONT = ICONT+1
IF (ICONT.LE.NRUN) GOTO 100
STOP

1000 FORMAT ('0'/'O'/'0'/'O'/'O'20X,'DEMONSTRATION OF BIASSED R.N.G. '
+ " CASE B'/'O',20X,'SAMPLE SIZE: ',18,', RUNS:',
+ 14/IX/'O' ,26X,'BIAS (PCT.) FOR' ,I7X,'BIAS (ST. DEV.) FOR'
+ /' 0' ,I3X, 'RUN' ,7X, 'X' ,9X, 'Y' ,9X,' Z' ,13X, 'X' ,9X, 'Y' ,9X,
+ 'Z'/IX)

2000 FORMAT ('0' ,IIS,IX,2P3FIO.3,3X,OP3FIO.2)
END
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C TEST-PROGRAMME FOR CHECKING BIAS IN THE ABSOLUTE VALUES
C OF THE COMPONENTS OF VECTORS INTENDED TO BE UNIFORMLY
C DISTRIBUTED ON THE 3-DIMENSIONAL UNIT SPIlERE.
C
C CASE C, SELECTION OF (X,Y) MADE MORE INDEPENDENT.
G

REAL*8 UNIT/1./,TWO/2./,HALF/.5/,X,Y,Z,SUMX,SUMY,SUMZ,VARX,VARY,
+ VARZ ,DEVX, DEVY ,DEVZ ,RAND, TERM

IA = 1
RAND = O.

C RANDU-ROUTINE INITIALIZED
ITOT = 100000
NRUN = 10
WRITE (6,1000) ITOT,NRUN
IGONT = 1

100 SUMX = o.
SUMY = o.
SUMZ = O.
VARX = o.
VARY = O.
VARZ = O.
DO 300 1=1, ITOT

GALL RANDU (IA,IB,RAND)
IA = IB
Z = TWO*RAND-UNIT

G Z UNIFORM IN (-1.,1.)
GALL RANDU (lA,IB,RAND)
IA = IB

C DECOUPLING OF (X,Y)-SELECTION
200 GALL RANDU (IA,IB,RAND)

IA = IB
X = TWO*RAND-UNIT
GALL RANDU (IA,IB,RAND)
IA = IB
Y = TWO*RAND-UNIT
TERM = X**2+Y**2
IF (TERM.GT.UNIT) GOTO 200

G X,Y UNIFORM IN UNIT DISK
TERM = DSQRT«UNIT-Z**2)/TERM)
X = X*TERM
Y = Y*TERM

C X,Y NORMALIZED
SUMX = SUMX+DABS(X)
VARX = VARX+X**2
SUMY = SUMY+DABS(Y)
VARY = VARY+Y**2
SUMZ = SUMZ+DABS(Z)

300 VARZ = VARZ+Z**2
TERM = DFLOAT(ITOT)
SUMX = SUMX/TERM
SUMY = SUMY/TERM
SUMZ = SUMZ/TERM

G MEAN ABSOLUTE VALUES OF VEGTOR COMPONENTS
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VARX = DSQRT((VARX/TERM-SUMX**2)/TERM)
VARY =DSQRT((VARY/TERM-SUMY**2)/TERM)
VARZ = DSQRT((VARZ/TERM-SUMZ**2)/TERM)

C STANDARD DEVIATIONS OF ESTlMATES
SUMX = (SUMX-HALF)/HALF
SUMY = (SUMY-HALF)/HALF
SUMZ =. (SUMZ-HALF)/HALF

C RELATIVE DEVIATIONS OF ESTlMATES
DEVX = (SU!1X*HALF)/VARX
DEVY = (SUMY*HALF)/VARY
DEVZ = (SUMZ*HALF)/VARZ

C NORMALIZED DEVIATIONS OF ESTlMATES
WRITE (6,2000) ICONT,SUMX,SUMY,SUMZ,DEVX,DEVY,DEVZ
ICONT = ICONT+1
IF (ICONT.LE.NRUN) GOTO 100
STOP

1000 FORMAT ('O'/'O'/'O'/'O'/'O'20X,'DEMONSTRATION OF BIASSED R.N.G. '
+ ,'CASE C' /'O',20X, 'SAMPLE SIZE: ',18,', RUNS:',
+ 14/1X/'O' ,26X,'BIAS (PCT.) FOR',17X,'BIAS (ST. DEV.) FOR'
+ /' 0' ,13X, 1 RUN' , 7X, 'X' ,9X, 'Y' ,9X, 'Z' ,13X, 'X' ,9X, 'Y' ,9X,
+ 'Z'/lX)

2000 FORMAT ('0' ,I15,lX,2P3F10.3,3X,OP3F10.2)
END

******
C TEST-PROGRAMME FOR CHECKING BIAS IN THE ABSOLUTE VALUES
C OF THE COMPONENTS OF VECTORS INTENDED TO BE UNIFORMLY
C DISTRIBUTED ON THE 3-DlMENSIONAL UNIT SPHERE.
C
C CASE D, SELECTION OF Z MADE MORE INDEPENDENT.
C

REAL*8 UNIT/1./,TWO/2./,HALF/.5/,X,Y,Z,SUMX,SUMY,SUMZ,VARX,VARY,
+ VARZ ,DEVX,DEVY,DEVZ ,RAND ,TERM

IA =1
RAND = O.

C RANDU-ROUTlNE INITIALIZED
ITOT =100000
NRUN = 10
WRITE (6,1000) ITOT,NRUN
ICONT =1

100 SUMX = O.
SUMY = O.
SUMZ = O.
VARX = O.
VARY = O.
VARZ =O.
DO 300 I=l,ITOT

CALL RANDU (IA,IB,RAND)
IA = IB

C DECOUPLING OF Z-SELECTION
CALL RANDU (IA,IB,RAND)
IA = IB
Z = TWO*RAND-UNIT

C Z UNIFORM IN (-1.,1.)
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200 CALL RANDU (IA,IB,RAND)
IA =IB
X = TWO*RAND-UNIT
CALL RANDU (IA,IB,RAND)
IA = IB
Y = TWO*RAND-UNIT
TERM =X**2+Y**2
IF (TERM.GT.UNIT) GOTO 200

C X,Y UNIFORM IN UNIT DISK
TERM = DSQRT«UNIT-Z**2)/TERM)
X = X*TERM
Y = Y*TERM

C X,Y NORMALIZED
SUMX = SUMX+DABS(X)
VARX = VARX+X**2
SUMY =SUMY+DABS(Y)
VARY = VARY+Y**2
SUMZ =SUMZ+DABS(Z)

300 VARZ = VARZ+Z**2
TERM =DFLOAT(ITOT)
SUMX =SUMX/TERM
SUMY = SUMY/TERM
SUMZ = SUMZ/TERM

C MEAN ABSOLUTE VALUES OF VECTOR COMPONENTS
VARX = DSQRT«VARX/TERM-SUMX**2)/TERM)
VARY = DSQRT«VARY/TERM-SUMY**2)/TERM)
VARZ = DSQRT«VARZ/TERM-SUMZ**2)/TERM)

C STANDARD DEVIATIONS OF ESTlMATES
SUMX = (SUMX-HALF)/HALF
SUMY = (SUMY-HALF)/HALF
SUMZ = (SUMZ-HAoLF)/HALF

C RELATIVE DEVIATIONS OF ESTlMATES
DEVX = (SUMX*HALF)/VARX
DEVY = (SUMY*HA1F)/VARY
DEVZ = (SUMZ*HALF)/VARZ

C NORMALIZED DEVIATIONS OF ESTlMATES
WRITE (6,2000) ICONT,SUMX,SUMY,SUMZ,DEVX,DEVY,DEVZ
ICONT = ICONT+1
IF (ICONT.LE.NRUN) GOTO 100
STOP

1000 FORMAT ('O'/'0'/'O'/'O'/'O'20X,'DEMONSTRATION OF BIASSED R.N.G. '
+ ,'CASED'/'O',20X,'SAMPLESIZE: ',18,', RUNS:',
+ 14/1X/'O' ,26X,'BIAS (PCT.) FOR' ,17X,'BIAS (ST. DEV.) FOR'
+ /' 0' , l3X, 'RUN' , 7X, 'X' ,9X, 'Y' ,9X, ' Z' , 13X, 'X' ,9X, 'Y' ,9X,
+ 'Z'/lX)

2000 FORMAT ('0' ,I1S,lX,2P3FIO.3,3X,OP3FIO.2)
END




