90 research outputs found

    Resolving the far-IR line deficit : photoelectric heating and far-IR line cooling in NGC 1097 and NGC 4559

    Get PDF
    The physical state of interstellar gas and dust is dependent on the processes which heat and cool this medium. To probe heating and cooling of the interstellar medium over a large range of infrared surface brightness, on sub-kiloparsec scales, we employ line maps of [C II] 158 mu m, [O I] 63 mu m, and [N II] 122 mu m in NGC 1097 and NGC 4559, obtained with the Photodetector Array Camera & Spectrometer on board Herschel. We matched new observations to existing Spitzer Infrared Spectrograph data that trace the total emission of polycyclic aromatic hydrocarbons (PAHs). We confirm at small scales in these galaxies that the canonical measure of photoelectric heating efficiency, ([C II] + [O I])/TIR, decreases as the far-infrared (far-IR) color, nu f(nu)(70 mu m) nu f(nu)(100 mu m), increases. In contrast, the ratio of far-IR cooling to total PAH emission, ([C II] + [O I])/PAH, is a near constant similar to 6% over a wide range of far-IR color, 0.5 , derived from models of the IR spectral energy distribution. Emission from regions that exhibit a line deficit is characterized by an intense radiation field, indicating that small grains are susceptible to ionization effects. We note that there is a shift in the 7.7/11.3 mu m PAH ratio in regions that exhibit a deficit in ([C II] + [O I])/PAH, suggesting that small grains are ionized in these environments

    Role of HDAC3 on p53 Expression and Apoptosis in T Cells of Patients with Multiple Sclerosis

    Get PDF
    Background: Histone deacetylase 3 (HDAC3) belongs to a family of proteins which plays an important role in protein acetylation, chromatin remodeling and transcription of genes, including those that are involved in cell proliferation and cell death. While increased expression of HDAC3 is seen in neoplastic cells, the role of HDAC3 in T cells and their role in autoimmune disease is not known. Methodology/Principal Findings: Applying Affymetrix GeneChip Human Gene 1.0 ST Array and the mixed effects model for gene set analysis, we compared gene expression profiles between multiple sclerosis (MS) patients and healthy controls (HC). Within the Apoptosis_GO gene set, the constitutive expression level of HDAC3 in peripheral blood mononuclear cell (PBMC) was significantly increased in MS patients when compared to controls. Following addition of trichostatin A (TSA), an inhibitor of HDAC3, we examined the expression of p53 by flow cytometry and p53 targeted genes by real time RT-PCR in MS and HC. Culture of PBMC with TSA resulted in increased expression of p53 in HC but not in MS patients. TSA treated T cells from MS patients also showed reduced sensitivity to apoptosis when compared to HC, which was independent of activation of p53 targeted pro-apoptotic genes. Conclusion/Significance: MS patients, when compared to controls, show an increased expression of HDAC3 and relative resistance to TSA induced apoptosis in T cells. Increased expression of HDAC3 in PBMC of MS patients may render putativ

    Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions

    Get PDF
    Background: Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface. Results: We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin. Conclusions: Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils

    Impact of digestive and oropharyngeal decontamination on the intestinal microbiota in ICU patients

    Get PDF
    Selective digestive microbial decontamination (SDD) is hypothesized to benefit patients in intensive care (ICU) by suppressing Gram-negative potential pathogens from the colon without affecting the anaerobic intestinal microbiota. The purpose of this study was to provide more insight to the effects of digestive tract and oropharyngeal decontamination on the intestinal microbiota by means of a prospective clinical trial in which faecal samples were collected from ICU patients for intestinal microbiota analysis. The faecal samples were collected from ICU patients enrolled in a multicentre trial to study the outcome of SDD and selective oral decontamination (SOD) in comparison with standard care (SC). Fluorescent in situ hybridization (FISH) was used to analyze the faecal microbiota. The numbers of bacteria from different bacterial groups were compared between the three regimens. The total counts of bacteria per gram faeces did not differ between regimens. The F. prausnitzii group of bacteria, representing an important group among intestinal microbiota, was significantly reduced in the SDD regimen compared to the SC and SOD. The Enterobacteriaceae were significantly suppressed during SDD compared to both SOD and SC; enterococci increased in SDD compared to both other regimens. The composition of the intestinal microbiota is importantly affected by SDD. The F. prausnitzii group was significantly suppressed during SDD. This group of microbiota is a predominant producer of butyrate, the main energy source for colonocytes. Reduction of this microbiota is an important trade-off while reducing gram-negative bacteria by SDD

    Like Will to Like: Abundances of Closely Related Species Can Predict Susceptibility to Intestinal Colonization by Pathogenic and Commensal Bacteria

    Get PDF
    The intestinal ecosystem is formed by a complex, yet highly characteristic microbial community. The parameters defining whether this community permits invasion of a new bacterial species are unclear. In particular, inhibition of enteropathogen infection by the gut microbiota ( = colonization resistance) is poorly understood. To analyze the mechanisms of microbiota-mediated protection from Salmonella enterica induced enterocolitis, we used a mouse infection model and large scale high-throughput pyrosequencing. In contrast to conventional mice (CON), mice with a gut microbiota of low complexity (LCM) were highly susceptible to S. enterica induced colonization and enterocolitis. Colonization resistance was partially restored in LCM-animals by co-housing with conventional mice for 21 days (LCMcon21). 16S rRNA sequence analysis comparing LCM, LCMcon21 and CON gut microbiota revealed that gut microbiota complexity increased upon conventionalization and correlated with increased resistance to S. enterica infection. Comparative microbiota analysis of mice with varying degrees of colonization resistance allowed us to identify intestinal ecosystem characteristics associated with susceptibility to S. enterica infection. Moreover, this system enabled us to gain further insights into the general principles of gut ecosystem invasion by non-pathogenic, commensal bacteria. Mice harboring high commensal E. coli densities were more susceptible to S. enterica induced gut inflammation. Similarly, mice with high titers of Lactobacilli were more efficiently colonized by a commensal Lactobacillus reuteri RR strain after oral inoculation. Upon examination of 16S rRNA sequence data from 9 CON mice we found that closely related phylotypes generally display significantly correlated abundances (co-occurrence), more so than distantly related phylotypes. Thus, in essence, the presence of closely related species can increase the chance of invasion of newly incoming species into the gut ecosystem. We provide evidence that this principle might be of general validity for invasion of bacteria in preformed gut ecosystems. This might be of relevance for human enteropathogen infections as well as therapeutic use of probiotic commensal bacteria

    Mouse Background Strain Profoundly Influences Paneth Cell Function and Intestinal Microbial Composition

    Get PDF
    Increasing evidence supports the central role of Paneth cells in maintaining intestinal host-microbial homeostasis. However, the direct impact of host genotype on Paneth cell function remains unclear. Here, we characterize key differences in Paneth cell function and intestinal microbial composition in two widely utilized, genetically distinct mouse strains (C57BL/6 and 129/SvEv). In doing so, we demonstrate critical influences of host genotype on Paneth cell activity and the enteric microbiota.Paneth cell numbers were determined by flow cytometry. Antimicrobial peptide (AMP) expression was evaluated using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR), acid urea-polyacrylamide gel electrophoresis, and mass spectrometry. Effects of mouse background on microbial composition were assessed by reciprocal colonization of germ-free mice from both background strains, followed by compositional analysis of resultant gut bacterial communities using terminal restriction fragment length polymorphism analysis and 16 S qPCR. Our results revealed that 129/SvEv mice possessed fewer Paneth cells and a divergent AMP profile relative to C57BL/6 counterparts. Novel 129/SvEv á-defensin peptides were identified, including Defa2/18v, Defa11, Defa16, and Defa18. Host genotype profoundly affected the global profile of the intestinal microbiota, while both source and host factors were found to influence specific bacterial groups. Interestingly, ileal α-defensins from 129/SvEv mice displayed attenuated antimicrobial activity against pro-inflammatory E. coli strains, a bacterial species found to be expanded in these animals.This work establishes the important impact of host genotype on Paneth cell function and the composition of the intestinal microbiota. It further identifies specific AMP and microbial alterations in two commonly used inbred mouse strains that have varying susceptibilities to a variety of disorders, ranging from obesity to intestinal inflammation. This will be critical for future studies utilizing these murine backgrounds to study the effects of Paneth cells and the intestinal microbiota on host health and disease

    Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota

    Get PDF
    The microbiome is essential for development, health and homeostasis throughout an animal's life. Yet, the origins and transmission processes governing animal microbiomes remain elusive for non-human vertebrates, oviparous vertebrates in particular. Eggs may function as transgenerational carriers of the maternal microbiome, warranting characterisation of egg microbiome assembly. Here, we investigated maternal and environmental contributions to avian eggshell microbiota in wild passerine birds: woodlark Lullula arborea and skylark Alauda arvensis. Using 16S rRNA gene sequencing, we demonstrated in both lark species, at the population and within-nest levels, that bacterial communities of freshly laid eggs were distinct from the female cloacal microbiome. Instead, soil-borne bacteria appeared to thrive on freshly laid eggs, and eggshell microbiota composition strongly resembled maternal skin, body feather and nest material communities, sources in direct contact with laid eggs. Finally, phylogenetic structure analysis and microbial source tracking underscored species sorting from directly contacting sources rather than in vivo-transferred symbionts. The female-egg-nest system allowed an integrative assessment of avian egg microbiome assembly, revealing mixed modes of symbiont acquisition not previously documented for vertebrate eggs. Our findings illuminated egg microbiome origins, which suggested a limited potential of eggshells for transgenerational transmission, encouraging further investigation of eggshell microbiome functions in vertebrates

    Helicobacter pylori CagA Triggers Expression of the Bactericidal Lectin REG3γ via Gastric STAT3 Activation

    Get PDF
    Background: Most of what is known about the Helicobacter pylori (H. pylori) cytotoxin, CagA, pertains to a much-vaunted role as a determinant of gastric inflammation and cancer. Little attention has been devoted to potential roles of CagA in the majority of H. pylori infected individuals not showing oncogenic progression, particularly in relation to host tolerance. Regenerating islet-derived (REG)3c encodes a secreted C-type lectin that exerts direct bactericidal activity against Grampositive bacteria in the intestine. Here, we extend this paradigm of lectin-mediated innate immunity, showing that REG3c expression is triggered by CagA in the H. pylori-infected stomach. Methodology/Principal Findings: In human gastric mucosal tissues, REG3c expression was significantly increased in CagApositive, compared to CagA-negative H. pylori infected individuals. Using transfected CagA-inducible gastric MKN28 cells, we recapitulated REG3c induction in vitro, also showing that tyrosine phosphorylated, not unphosphorylated CagA triggers REG3c transcription. In concert with induced REG3c, pro-inflammatory signalling downstream of the gp130 cytokine coreceptor via the signal transducer and activator of transcription (STAT)3 and transcription of two cognate ligands, interleukin(IL)-11 and IL-6, were significantly increased. Exogenous IL-11, but not IL-6, directly stimulated STAT3 activation and REG3c transcription. STAT3 siRNA knockdown or IL-11 receptor blockade respectively abrogated or subdued CagAdependent REG3c mRNA induction, thus demonstrating a requirement for uncompromised signalling via the IL-11/STAT

    Symbols of Power: The Firearm Paintings of Madjedbebe (Malakunanja II)

    Get PDF
    Depictions of firearms in Australian Aboriginal rock art provide a unique opportunity to archaeologically explore the roles that this type of material culture played in times of culture contact. From the earliest interactions with explorers to the buffalo shooting enterprises of the twentieth century—firearms played complex and shifting roles in western Arnhem Land Aboriginal societies. The site of Madjedbebe (sometimes referred to as Malakunanja II in earlier academic literature) in Jabiluka (Mirarr Country), offers the opportunity to explore these shifting roles over time with an unprecedented 16 paintings of firearms spanning the nineteenth and twentieth centuries. This rock art provides evidence for early firearms as objects of curiosity and threat to local groups, as well as evidence for later personal ownership and use of such weaponry. Moreover, we argue that the rock art suggests increasing incorporation of firearms into traditional cultural belief and artistic systems over time with Madjedbebe playing a key role in the communication of the cultural meanings behind this new subject matter.Arts, Education & Law Group, School of Humanities, Languages and Social SciencesFull Tex
    corecore