46 research outputs found

    A test of trophic cascade theory: fish and benthic assemblages across a predator density gradient on coral reefs

    Get PDF
    Removal of predators is often hypothesized to alter community structure through trophic cascades. However, despite recent advances in our understanding of trophic cascades, evidence is often circumstantial on coral reefs because fishing pressure frequently co-varies with other anthropogenic effects, such as fishing for herbivorous fishes and changes in water quality due to pollution. Australia’s outer Great Barrier Reef (GBR) has experienced fishing-induced declines of apex predators and mesopredators, but pollution and targeting of herbivorous fishes are minimal. Here, we quantify fish and benthic assemblages across a fishing-induced predator density gradient on the outer GBR, including apex predators and mesopredators to herbivores and benthic assemblages, to test for evidence of trophic cascades and alternative hypotheses to trophic cascade theory. Using structural equation models, we found no cascading effects from apex predators to lower trophic levels: a loss of apex predators did not lead to higher levels of mesopredators, and this did not suppress mobile herbivores and drive algal proliferation. Likewise, we found no effects of mesopredators on lower trophic levels: a decline of mesopredators was not associated with higher abundances of algae-farming damselfishes and algae-dominated reefs. These findings indicate that top-down forces on coral reefs are weak, at least on the outer GBR. We conclude that predator-mediated trophic cascades are probably the exception rather than the rule in complex ecosystems such as the outer GBR

    Low-mass pre--main-sequence stars in the Magellanic Clouds

    Full text link
    [Abridged] The stellar Initial Mass Function (IMF) suggests that sub-solar stars form in very large numbers. Most attractive places for catching low-mass star formation in the act are young stellar clusters and associations, still (half-)embedded in star-forming regions. The low-mass stars in such regions are still in their pre--main-sequence (PMS) evolutionary phase. The peculiar nature of these objects and the contamination of their samples by the evolved populations of the Galactic disk impose demanding observational techniques for the detection of complete numbers of PMS stars in the Milky Way. The Magellanic Clouds, the companion galaxies to our own, demonstrate an exceptional star formation activity. The low extinction and stellar field contamination in star-forming regions of these galaxies imply a more efficient detection of low-mass PMS stars than in the Milky Way, but their distance from us make the application of special detection techniques unfeasible. Nonetheless, imaging with the Hubble Space Telescope yield the discovery of solar and sub-solar PMS stars in the Magellanic Clouds from photometry alone. Unprecedented numbers of such objects are identified as the low-mass stellar content of their star-forming regions, changing completely our picture of young stellar systems outside the Milky Way, and extending the extragalactic stellar IMF below the persisting threshold of a few solar masses. This review presents the recent developments in the investigation of PMS stars in the Magellanic Clouds, with special focus on the limitations by single-epoch photometry that can only be circumvented by the detailed study of the observable behavior of these stars in the color-magnitude diagram. The achieved characterization of the low-mass PMS stars in the Magellanic Clouds allowed thus a more comprehensive understanding of the star formation process in our neighboring galaxies.Comment: Review paper, 26 pages (in LaTeX style for Springer journals), 4 figures. Accepted for publication in Space Science Review

    Micro-topography mediates interactions between corals, algae, and herbivorous fishes on coral reefs

    No full text
    Processes occurring during the early life stages of corals are important for the replenishment of coral assemblages and the resilience of coral reefs. However, the factors influencing early life stages of corals are not well understood, and the role of micro-topographic complexity for habitat associations of juvenile corals is largely unexplored. This study investigated the microhabitat distribution patterns of early life stages of corals and a potential macroalgal competitor (Turbinaria ornata) across two reef zones (reef crest and outer reef flat) on Lizard Island, Great Barrier Reef. In both reef zones, both corals and T. ornata were significantly more abundant in concealed microhabitats than in semi-concealed or open microhabitats (GLMM: P < 0.001). The prevalence of juvenile corals and T. ornata within concealed environments suggests that they might be effective refuges from grazing by herbivorous fishes. The density of juvenile corals was positively related, and density of T. ornata negatively related to the abundance of two groups of herbivorous fishes, pairing rabbitfishes, and surgeonfishes in the genus Zebrasoma (BEST ENV-BIO: r (s) = 0.72, P < 0.01), which feed in concealed microhabitats. This correlative evidence suggests that crevices may be important for early life stages of both coral and macroalgae, and that a specific suite of crevice-feeding fishes may influence benthic community dynamics in these microhabitats

    Diet and cross-shelf distribution of rabbitfishes (f. Siganidae) on the northern Great Barrier Reef: implications for ecosystem function

    No full text
    Herbivorous fishes are a critical functional group on coral reefs, and there is a clear need to understand the role and relative importance of individual species in reef processes. While numerous studies have quantified the roles of parrotfishes and surgeonfishes on coral reefs, the rabbitfishes (f. Siganidae) have been largely overlooked. Consequently, they are typically viewed as a uniform group of grazing or browsing fishes. Here, we quantify the diet and distribution of rabbitfish assemblages on six reefs spanning the continental shelf in the northern Great Barrier Reef. Our results revealed marked variation in the diet and distribution of rabbitfish species. Analysis of stomach contents identified four distinct groups: browsers of leathery brown macroalgae (Siganus canaliculatus, S. javus), croppers of red and green macroalgae (S. argenteus, S. corallinus, S. doliatus, S. spinus), and mixed feeders of diverse algal material, cyanobacteria, detritus and sediment (S. lineatus, S. punctatissimus, S. punctatus, S. vulpinus). Surprisingly, the diet of the fourth group (S. puellus) contained very little algal material (22.5%) and was instead dominated by sponges (69.1%). Together with this variation in diet, the distribution of rabbitfishes displayed clear cross-shelf variation. Biomass was greatest on inner-shelf reefs (112.7 ± 18.2 kg.ha⁻¹), decreasing markedly on mid- (37.8 ± 4.6 kg.ha⁻¹) and outer-shelf reefs (9.7 ± 2.2 kg.ha⁻¹). This pattern was largely driven by the browsing S. canaliculatus that accounted for 50% of the biomass on inner-shelf reefs, but was absent from mid- and outer-shelf reefs. Mixed feeders, although primarily restricted to the reef slope and back reef habitats, also decreased in abundance and biomass from inshore to offshore, while algal cropping taxa were the dominant group on mid-shelf reefs. These results clearly demonstrate the extent to which diet and distribution vary within the Siganidae and emphasize the importance of examining function on a species-by-species basis

    Local extinction of a coral reef fish explained by inflexible prey choice

    No full text
    While global extinctions of marine species are infrequent, local extinctions are becoming common. However, the role of habitat degradation and resource specialisation in explaining local extinction is unknown. On coral reefs, coral bleaching is an increasingly frequent cause of coral mortality that can result in dramatic changes to coral community composition. Coral-associated fishes are often specialised on a limited suite of coral species and are therefore sensitive to these changes. This study documents the local extinction of a corallivorous reef fish, Oxymonacanthus longirostris, following a mass bleaching event that altered the species composition of associated coral communities. Local extinction only occurred on reefs that also completely lost a key prey species, Acropora millepora, even though coral cover remained high. In an experimental test, fish continued to select bleached A. millepora over the healthy, but less-preferred prey species that resisted bleaching. These results suggest that behavioural inflexibility may limit the ability of specialists to cope with even subtle changes to resource availability

    Fifty million years of herbivory on coral reefs: fossils, fish and functional innovations

    No full text
    The evolution of ecological processes on coral reefs was examined based on Eocene fossil fishes from Monte Bolca, Italy and extant species from the Great Barrier Reef, Australia. Using ecologically relevant morphological metrics, we investigated the evolution of herbivory in surgeonfishes (Acanthuridae) and rabbitfishes (Siganidae). Eocene and Recent surgeonfishes showed remarkable similarities, with grazers, browsers and even specialized, long-snouted forms having Eocene analogues. These long-snouted Eocene species were probably pair-forming, crevice-feeding forms like their Recent counterparts. Although Eocene surgeonfishes likely played a critical role as herbivores during the origins of modern coral reefs, they lacked the novel morphologies seen in modern Acanthurus and Siganus (including eyes positioned high above their low-set mouths). Today, these forms dominate coral reefs in both abundance and species richness and are associated with feeding on shallow, exposed algal turfs. The radiation of these new forms, and their expansion into new habitats in the Oligocene-Miocene, reflects the second phase in the development of fish herbivory on coral reefs that is closely associated with the exploitation of highly productive short algal turfs

    Data from: The shape of success in a turbulent world: wave exposure filtering of coral reef herbivory

    No full text
    While environmental filters are well-known factors influencing community assembly, the extent to which these modify species functions, and entire ecosystem processes, is poorly understood. Focusing on a high-diversity system, we ask whether environmental filtering has ecosystem-wide effects beyond community assembly. We characterise a coral reef herbivorous fish community for swimming performance based on ten functional traits derived from fish morphology. We then investigate whether wave exposure modifies the functional make-up of herbivory, and the absolute and relative feeding frequency of distinct feeding functional groups. Herbivorous fish species conformed to either laterally compressed or fusiform body plans, which differ in their morphological design to minimise drag. High wave exposure selectively limited the feeding function of the deepest body shapes with highest caudal thrust efficiency, and favoured fusiform bodies irrespective of pectoral fin shape. Traditionally recognised herbivore feeding functional groups (i.e. grazers–detritivores and scrapers–small excavators) differed in swimming performance, and in their capacity to feed consistently across levels of wave exposure. We therefore emphasise the distinctness of their ecological niche and functional complementarity. Species within the same feeding functional group also had contrasting responses to wave exposure. We thereby reveal a further ecological dimension of niche partitioning, and reiterate the risk of assuming functional redundancy among species with a common feeding mode. Contrasting responses of species within feeding functional roles (i.e. response diversity) allowed the preservation of critical trophic functions throughout the gradient (e.g. macroalgal browsing), and likely explained why overall levels of herbivory were robust to filtering. Whether ecosystem functioning will remain robust under the additive effects of environmental stress and human-induced disturbances remains to be tested
    corecore