358 research outputs found

    Complex patterns of secondary spread without loss of genetic diversity in invasive populations of the Asian shore crab Hemigrapsus takanoi (Decapoda) along European coasts

    Get PDF
    Genetic studies of introduced non-native species are a valuable tool to investigate invasion history and pathways, source populations and multiple introductions of alien species, as well as evolutionary genetic changes following establishment in a new environment. We used a set of nine polymorphic microsatellites to analyse the population genetic structure of the introduced Asian shore crab Hemigrapsus takanoi along European coasts. Our dataset covered the complete known European range of the species, including the most recent records from Great Britain and the southwestern Baltic Sea. The results showed a similarly high genetic diversity of H. takanoi throughout Europe, and no indication of genetic bottlenecks during secondary spread, even in the most recently established populations. Analyses for population structure along geographic regions gave support for a separation between the Bay of Seine populations (northern France) and all other populations. Genetic differentiation within the North and Baltic Seas was more subtle and patchy, hinting to potential unrecognised introduction events, dispersal barriers and anthropogenic vector activity. The populations from the Baltic Sea and Great Britain clustered with the Wadden Sea populations, suggesting secondary introductions from the southeastern North Sea as likely invasion pathways. In summary, we suggest that a combination of anthropogenic secondary spread and the species’ reproductive biology have prevented a loss of genetic diversity during its ongoing expansion. We argue that genetic data depicting population status shortly after an introduction event—like the British and Baltic Sea populations of H. takanoi—may provide important baseline data for investigations of genetic changes during establishment and adaptation processes

    Reconstruction of Schiaparelli and Comars Flight Data

    Get PDF
    ESA recently flew an entry, descent, and landing demonstrator module called Schiaparelli that entered the atmosphere of Mars on the 19th of October, 2016. The instrumentation suite included heatshield and backshell pressure transducers and thermocouples (known as AMELIA) and backshell radiation and direct heatflux-sensing sensors (known as COMARS and ICOTOM). Due to the failed landing of Schiaparelli, only a subset of the flight data was transmitted before and after plasma black-out. The goal of this paper is to present comparisons of the flight data with calculations from NASA simulation tools, DPLR/NEQAIR and LAURA/HARA. DPLR and LAURA are used to calculate the flowfield around the vehicle and surface properties, such as pressure and convective heating. The flowfield data are passed to NEQAIR and HARA to calculate the radiative heat flux. Comparisons will be made to the COMARS total heat flux, radiative heat flux and pressure measurements. Results will also be shown against the reconstructed heat flux which was calculated from an inverse analysis of the AMELIA thermocouple data performed by Astrium. Preliminary calculations are presented in this abstract. The aerodynamics of the vehicle and certain as yet unexplained features of the inverse analysis and forebody data will be investigated

    Simulation Schiaparelli's Entry and Comparison to Aerothermal Flight Data

    Get PDF
    The European Space Agency recently flew an entry, descent, and landing demonstrator module called Schiaparelli that entered the atmosphere of Mars on the 19th of October, 2016. The instrumentation suite included heatshield and backshell pressure transducers and thermocouples (known as AMELIA - Atmospheric Mars Entry and Landing Investigations and Analysis) and backshell radiation and direct heat flux-sensing sensors (known as COMARS (Combined Aerothermal and Radiometer Sensors Instrument Package) and ICOTOM (narrow band radiometers)). Due to the failed landing of Schiaparelli, only a subset of the flight data was transmitted before and after plasma black-out. The goal of this paper is to present comparisons of the flight data with calculations from NASA simulation tools, DPLR (Data Parallel Line Relaxation) / NEQAIR (NonEQuilibrium AIr Radiation) and LAURA (Langley Aerothermodynamic Upwind Relaxation Algorithm) / HARA (High-temperature Aerothermodynamic RAdiation ). DPLR and LAURA are used to calculate the flowfield around the vehicle and surface properties, such as pressure and convective heating. The flowfield data are passed to NEQAIR and HARA to calculate the radiative heat flux. Comparisons will be made to the COMARS total heat flux, radiative heat flux and pressure measurements. Results will also be shown against the reconstructed heat flux which was calculated from an inverse analysis of the AMELIA thermocouple data performed by Astrium. Preliminary calculations are presented in this abstract

    Nonequilibrium radiation measurements and modelling relevant to Titan entry

    Get PDF
    An update to a collisional-radiative model developed by Magin1 for Huygens Titan atmospheric entry is proposed. The model is designed to predict the nonequilibrium populations and the radiation emitted from cyanogen and nitrogen during the entry of the Huygens probe into the Titan atmosphere. Radiation during Titan entry is important at lower speeds (around 5 – 6 km/s) more so than other planetary entries due to the formation of cyanogen in the shock layer, which is a highly radiative species. The model has been tested against measurements obtained with the EAST shock tube of NASA Ames Research Centre.1,2 The motivation for the update is due to the large discrepancies shown in the postshock fall-off rates of the radiation when compared to the experimental EAST shock tube test results. Modifications were made to the reaction rates used to calculate the species concentrations in the flow field. The reaction that was deemed most influential for the radiation fall off rate was the dissociation of molecular nitrogen. The model with modified reaction rates showed significantly better agreement with the EAST data. This paper also includes experimental results for radiation and spectra for Titan entry. Experiments were performed on the University of Queensland's X2 expansion tube. Spectra were recorded at various positions behind the shock. This enabled the construction of radiation profiles for Titan entry, as well as wavelength plots to identify various radiating species, in this case, predominately CN violet. This paper includes radiation profiles to compare with experiments performed at NASA Ames. It is planned that further experiments will be performed to cover a larger pressure range than NASA Ames. Good qualitative agreement has so far been obtained between our data and NASA Ames, however, it should be noted at the time of printing, the experimental spectrum have not been calibrated absolutely

    Recruitment patterns, low cannibalism and reduced interspecific predation contribute to high invasion success of two Pacific crabs in northwestern Europe

    Get PDF
    Life-history traits and interactions with native species play an important role for the successful establishment of non-native species in new habitats. We investigated the recent successful invasion of the Pacific crabs Hemigrapsus takanoi and H. sanguineus to the southeastern North Sea coast with respect to their recruitment patterns, as well as interactions of juvenile with sub-adult individuals among the Pacific crabs and with native shore crabs Carcinus maenas. A field survey of juvenile native and introduced crab abundances (carapace width 1.4–10 mm) was conducted in the northern Wadden Sea, spanning 24 months from 2014 to 2016. The survey revealed different seasonal recruitment patterns of native C. maenas and both introduced Hemigrapsus species. Native shore crabs showed a single recruitment peak from June to July, while Hemigrapsus spp. mainly recruited from August to early September, but recruits occurred in low densities throughout the winter until the end of the following spring season. Field experiments on the effects of larger crabs on the recruitment intensity showed that recruitment of H. takanoi was enhanced by the presence of larger congeners, but remained unaffected by larger C. maenas. Recruitment of juvenile C. maenas, by contrast, was reduced by the presence of larger Hemigrapsus spp. Additional laboratory experiments revealed high rates of cannibalism on newly recruited C. maenas by subadult conspecifics as well as strong predation by larger Hemigrapsus spp. In contrast, newly recruited Hemigrapsus spp. had a much lower risk of being preyed on by subadult conspecifics and native shore crabs. Our results suggest that the timing of recruitment in combination with low intraspecific competition and reduced predation pressure by native shore crabs are crucial for the rapid and ongoing establishment of Hemigrapsus spp. in the Wadden Sea

    Influence of thermal history on the structure and properties of silicate glasses

    Full text link
    We studied a set of float glass samples prepared with different fictive temperature by previous annealing around the glass transition temperature. We compared the results to previous measurements on a series of amorphous silica samples, also prepared with different fictive temperature. We showed that the modifications on the structure at a local scale are very small, the changes of physical properties are moderate but the changes on density fluctuations at a nanometer scale are rather large: 12 and 20% in float glass and silica, for relative changes of fictive temperature equal to 13 and 25% respectively. Local order and mechanical properties of silica vary in the opposite way compared to float glass (anomalous behavior) but the density fluctuations in both glasses increase with temperature and fictive temperature

    Radiative Heating on the After-Body of Martian Entry Vehicles

    Get PDF
    This paper presents simulations of the radiative heat flux imparted on the after-body of vehicles entering the Martian atmosphere. The radiation is dominated by CO2 bands emitting in the mid-wave infrared spectral region. This mechanism has traditionally not been considered in the design of past Mars entry vehicles. However, with recent analysis showing that the CO2 radiation can be greater than convective heating in the wake, and with several upcoming and proposed missions to Mars potentially affected, an investigation of the impact of this radiation is warranted. The focus of this paper is to provide a better understanding of the impact to aerothermal heating predictions and to provide comparisons between NASA's two main radiation codes, NEQAIR and HARA. The tangent slab approximation is shown to be overly conservative, by as much as 58 percent, for most back- shell body point locations compared to using a full angular integration method. However, due to the complexity of the wake flow, it is also shown that tangent slab does not always represent an upper limit for radiative heating. Furthermore, analysis in this paper shows that it is not possible to provide a general knock-down factor from the tangent slab results to those obtained using the more rigorous full integration method. When the radiative heating is accounted for on the after-body, the unmargined total heat flux can be as high as 14 watts per square centimeter

    An environmental gradient dominates ecological and genetic differentiation of marine invertebrates between the North and Baltic Sea

    Get PDF
    Environmental gradients have emerged as important barriers to structuring populations and species distributions. We set out to test whether the strong salinity gradient from the marine North Sea to the brackish Baltic Sea in northern Europe represents an ecological and genetic break, and to identify life history traits that correlate with the strength of this break. We accumulated mitochondrial cytochrome oxidase subunit 1 sequence data, and data on the distribution, salinity tolerance, and life history for 28 species belonging to the Cnidaria, Crustacea, Echinodermata, Mollusca, Polychaeta, and Gastrotricha. We included seven non-native species covering a broad range of times since introduction, in order to gain insight into the pace of adaptation and differentiation. We calculated measures of genetic diversity and differentiation across the environmental gradient, coalescent times, and migration rates between North and Baltic Sea populations, and analyzed correlations between genetic and life history data. The majority of investigated species is either genetically differentiated and/or adapted to the lower salinity conditions of the Baltic Sea. Species exhibiting population structure have a range of patterns of genetic diversity in comparison with the North Sea, from lower in the Baltic Sea to higher in the Baltic Sea, or equally diverse in North and Baltic Sea. Two of the non-native species showed signs of genetic differentiation, their times since introduction to the Baltic Sea being about 80 and >700 years, respectively. Our results indicate that the transition from North Sea to Baltic Sea represents a genetic and ecological break: The diversity of genetic patterns points toward independent trajectories in the Baltic compared with the North Sea, and ecological differences with regard to salinity tolerance are common

    When all life counts in conservation

    Full text link
    © 2019 Society for Conservation Biology Conservation science involves the collection and analysis of data. These scientific practices emerge from values that shape who and what is counted. Currently, conservation data are filtered through a value system that considers native life the only appropriate subject of conservation concern. We examined how trends in species richness, distribution, and threats change when all wildlife count by adding so-called non-native and feral populations to the International Union for Conservation of Nature Red List and local species richness assessments. We focused on vertebrate populations with founding members taken into and out of Australia by humans (i.e., migrants). We identified 87 immigrant and 47 emigrant vertebrate species. Formal conservation accounts underestimated global ranges by an average of 30% for immigrants and 7% for emigrants; immigrations surpassed extinctions in Australia by 52 species; migrants were disproportionately threatened (33% of immigrants and 29% of emigrants were threatened or decreasing in their native ranges); and incorporating migrant populations into risk assessments reduced global threat statuses for 15 of 18 species. Australian policies defined most immigrants as pests (76%), and conservation was the most commonly stated motivation for targeting these species in killing programs (37% of immigrants). Inclusive biodiversity data open space for dialogue on the ethical and empirical assumptions underlying conservation science
    • …
    corecore