13 research outputs found

    Th2-biased immune responses to body migrating Ascaris larvae in primary infection are associated with pathology but not protection

    Get PDF
    Helminth infections lead to an overdispersion of the parasites in humans as well as in animals. We asked whether early immune responses against migrating Ascaris larvae are responsible for the unequal distribution of worms in natural host populations and thus investigated a susceptible versus a resistant mouse strain. In mice, the roundworm larvae develop until the lung stage and thus early anti-Ascaris immune responses against the migrating larvae in the liver and lung can be deciphered. Our data show that susceptible C57BL/6 mice respond to Ascaris larval migration significantly stronger compared to resistant CBA mice and the anti-parasite reactivity is associated with pathology. Increased eosinophil recruitment was detected in the liver and lungs, but also in the spleen and peritoneal cavity of susceptible mice on day 8 post infection compared to resistant mice. In serum, eosinophil peroxidase levels were significantly higher only in the susceptible mice, indicating functional activity of the recruited eosinophils. This effect was associated with an increased IL-5/IL-13 production by innate lymphoid cells and CD4+ T cells and a pronounced type 2 macrophage polarization in the lungs of susceptible mice. Furthermore, a comparison of wildtype BALB/c and eosinophil-deficient dblGATA-1 BALB/c mice showed that eosinophils were not essential for the early control of migrating Ascaris larvae. In conclusion, in primary infection, a strong local and systemic type 2 immune response during hepato-tracheal helminth larval migration is associated with pathology rather than protection

    Interlaboratory Reproducibility in Growth and Reporter Expression in the Cyanobacterium Synechocystis sp. PCC 6803

    Get PDF
    In recent years, a plethora of new synthetic biology tools for use in cyanobacteria have been published; however, their reported characterizations often cannot be reproduced, greatly limiting the comparability of results and hindering their applicability. In this interlaboratory study, the reproducibility of a standard microbiological experiment for the cyanobacterial model organism Synechocystis sp. PCC 6803 was assessed. Participants from eight different laboratories quantified the fluorescence intensity of mVENUS as a proxy for the transcription activity of the three promoters PJ23100, PrhaBAD, and PpetE over time. In addition, growth rates were measured to compare growth conditions between laboratories. By establishing strict and standardized laboratory protocols, reflecting frequently reported methods, we aimed to identify issues with state-of-the-art procedures and assess their effect on reproducibility. Significant differences in spectrophotometer measurements across laboratories from identical samples were found, suggesting that commonly used reporting practices of optical density values need to be supplemented by cell count or biomass measurements. Further, despite standardized light intensity in the incubators, significantly different growth rates between incubators used in this study were observed, highlighting the need for additional reporting requirements of growth conditions for phototrophic organisms beyond the light intensity and CO2 supply. Despite the use of a regulatory system orthogonal to Synechocystis sp. PCC 6803, PrhaBAD, and a high level of protocol standardization, ∼32% variation in promoter activity under induced conditions was found across laboratories, suggesting that the reproducibility of other data in the field of cyanobacteria might be affected similarly

    Acute Ascaris infection impairs the effector functions of natural killer cells in single and Salmonella co-infected pigs

    Get PDF
    Natural killer (NK) cells play a key role in defense against Salmonella infections during the early phase of infection. Our previous work showed that the excretory/secretory products of Ascaris suum repressed NK activity in vitro. Here, we asked if NK cell functionality was influenced in domestic pigs during coinfection with Ascaris and Salmonella enterica serotype Typhimurium. Ascaris coinfection completely abolished the IL-12 and IL-18 driven elevation of IFN-γ production seen in CD16 + CD8α + perforin + NK cells of Salmonella single-infected pigs. Furthermore, Ascaris coinfection prohibited the Salmonella-driven rise in NK perforin levels and CD107a surface expression. In line with impaired effector functions, NK cells from Ascaris-single and coinfected pigs displayed elevated expression of the inhibitory KLRA1 and NKG2A receptors genes, contrasting with the higher expression of the activating NKp46 and NKp30 receptors in NK cells during Salmonella single infection. These differences were accompanied by the highly significant upregulation of T-bet protein expression in NK cells from Ascaris-single and Ascaris/Salmonella coinfected pigs. Together, our data strongly indicate a profound repression of NK functionality by an Ascaris infection which may hinder infected individuals from adequately responding to a concurrent bacterial infection

    Genome Sequences of 18 Salmonella enterica Serotype Hadar Strains Collected from Patients in the United States

    Get PDF
    Despite being linked to a number of recent poultry-associated outbreaks in the United States, few reference genomes are available for Salmonella enterica serotype Hadar. Here, we address this need by reporting 18 Salmonella Hadar genomes from samples collected from patients in the United States between 2014 and 2020

    Ascaris suum infection in juvenile pigs elicits a local Th2 response in a setting of ongoing Th1 expansion

    Get PDF
    Ascaris spp. undergo extensive migration within the body before establishing patent infections in the small intestinal tract of humans and pigs. However, whether larval migration is critical for inducing efficient type 2 responses remains poorly understood. Therefore, we investigated systemic versus local adaptive immune responses along the hepato-tracheal migration of Ascaris suum during primary, single infections in conventionally raised pigs. Neither the initial invasion of gut tissue nor migration through the liver resulted in discernable Th2 cell responses. In contrast, lung-stage larvae elicited a Th2-biased pulmonary response, which declined after the larvae had left the lungs. In the small intestine, we observed an accumulation of Th2 cells upon the arrival of fourth-stage larvae (L4) to the small intestinal lumen. In parallel, we noticed robust and increasing Th1 responses in circulation, migration-affected organs, and draining lymph nodes. Phenotypic analysis of CD4+ T cells specifically recognizing A. suum antigens in the circulation and lung tissue of infected pigs confirmed that the majority of Ascaris -specific T cells produced IL-4 (Th2) and, to a much lesser extent, IL-4/IFN-g (Th2/1 hybrids) or IFN-g alone (Th1). These data demonstrate that lung-stage but not the early liver-stage larvae lead to a locally restricted Th2 response. Significant Th2 cell accumulation in the small intestine occurs only when L4 complete the body migration. In addition, Th2 immunity seems to be hampered by the concurrent, nonspecific Th1 bias in growing pigs. Together, the late onset of Th2 immunity at the site of infection and the Th1-biased systemic immunity likely enable the establishment of intestinal infections by sufficiently large L4 stages and pre-adult worms, some of which resist expulsion mechanisms

    Mechanisms of viral entry: sneaking in the front door

    Get PDF
    Recent developments in methods to study virus internalisation are providing clearer insights into mechanisms used by viruses to enter host cells. The use of dominant negative constructs, specific inhibitory drugs and RNAi to selectively prevent entry through particular pathways has provided evidence for the clathrin-mediated entry of hepatitis C virus (HCV) as well as the caveolar entry of Simian Virus 40. Moreover, the ability to image and track fluorescent-labelled virus particles in real-time has begun to challenge the classical plasma membrane entry mechanisms described for poliovirus and human immunodeficiency virus. This review will cover both well-documented entry mechanisms as well as more recent discoveries in the entry pathways of enveloped and non-enveloped viruses. This will include viruses which enter the cytosol directly at the plasma membrane and those which enter via endocytosis and traversal of internal membrane barrier(s). Recent developments in imaging and inhibition of entry pathways have provided insights into the ill-defined entry mechanism of HCV, bringing it to the forefront of viral entry research. Finally, as high-affinity receptors often define viral internalisation pathways, and tropism in vivo, host membrane proteins to which viral particles specifically bind will be discussed throughout

    Rapid Actin-Dependent Viral Motility in Live Cells

    Get PDF
    During the course of an infection, viruses take advantage of a variety of mechanisms to travel in cells, ranging from diffusion within the cytosol to active transport along cytoskeletal filaments. To study viral motility within the intrinsically heterogeneous environment of the cell, we have developed a motility assay that allows for the global and unbiased analysis of tens of thousands of virus trajectories in live cells. Using this assay, we discovered that poliovirus exhibits anomalously rapid intracellular movement that was independent of microtubules, a common track for fast and directed cargo transport. Such rapid motion, with speeds of up to 5 μm/s, allows the virus particles to quickly explore all regions of the cell with the exception of the nucleus. The rapid, microtubule-independent movement of poliovirus was observed in multiple human-derived cell lines, but appeared to be cargo-specific. Other cargo, including a closely related picornavirus, did not exhibit similar motility. Furthermore, the motility is energy-dependent and requires an intact actin cytoskeleton, suggesting an active transport mechanism. The speed of this microtubule-independent but actin-dependent movement is nearly an order of magnitude faster than the fastest speeds reported for actin-dependent transport in animal cells, either by actin polymerization or by myosin motor proteins

    Interlaboratory Reproducibility in Growth and Reporter Expression in the Cyanobacterium Synechocystis sp. PCC 6803

    Get PDF
    In recent years, a plethora of new synthetic biology tools for use in cyanobacteria have been published; however, their reported characterizations often cannot be reproduced, greatly limiting the comparability of results and hindering their applicability. In this interlaboratory study, the reproducibility of a standard microbiological experiment for the cyanobacterial model organism Synechocystis sp. PCC 6803 was assessed. Participants from eight different laboratories quantified the fluorescence intensity of mVENUS as a proxy for the transcription activity of the three promoters PJ23100, PrhaBAD, and PpetE over time. In addition, growth rates were measured to compare growth conditions between laboratories. By establishing strict and standardized laboratory protocols, reflecting frequently reported methods, we aimed to identify issues with state-of-the-art procedures and assess their effect on reproducibility. Significant differences in spectrophotometer measurements across laboratories from identical samples were found, suggesting that commonly used reporting practices of optical density values need to be supplemented by cell count or biomass measurements. Further, despite standardized light intensity in the incubators, significantly different growth rates between incubators used in this study were observed, highlighting the need for additional reporting requirements of growth conditions for phototrophic organisms beyond the light intensity and CO2 supply. Despite the use of a regulatory system orthogonal to Synechocystis sp. PCC 6803, PrhaBAD, and a high level of protocol standardization, ∼32% variation in promoter activity under induced conditions was found across laboratories, suggesting that the reproducibility of other data in the field of cyanobacteria might be affected similarlyGerman Research Foundation 390713860, 239748522European Union 760994Ministerio de Ciencia e Innovación PID2020-112645GB-I00UK Biotechnology and Biological Sciences Research Council (BBSRC) BB/S020128/
    corecore