771 research outputs found

    Prolongation of Friction Dominated Evolution for Superconducting Cosmic Strings

    Get PDF
    This investigation is concerned with cosmological scenarios based on particle physics theories that give rise to superconducting cosmic strings (whose subsequent evolution may produce stable loop configurations known as vortons). Cases in which electromagnetic coupling of the string current is absent or unimportant have been dealt with in previous work. The purpose of the present work is to provide quantitative estimates for cases in which electromagnetic interaction with the surrounding plasma significantly affects the string dynamics. In particular it will be shown that the current can become sufficiently strong for the initial period of friction dominated string motion to be substantially prolonged, which would entail a reinforcement of the short length scale end of the spectrum of the string distribution, with potentially observable cosmological implications if the friction dominated scenario lasts until the time of plasma recombination.Comment: 10 pages Late

    Non-Thermal Production of WIMPs and the Sub-Galactic Structure of the Universe

    Get PDF
    There is increasing evidence that conventional cold dark matter (CDM) models lead to conflicts between observations and numerical simulations of dark matter halos on sub-galactic scales. Spergel and Steinhardt showed that if the CDM is strongly self-interacting, then the conflicts disappear. However, the assumption of strong self-interaction would rule out the favored candidates for CDM, namely weakly interacting massive particles (WIMPs), such as the neutralino. In this paper we propose a mechanism of non-thermal production of WIMPs and study its implications on the power spectrum. We find that the non-vanishing velocity of the WIMPs suppresses the power spectrum on small scales compared to what it obtained in the conventional CDM model. Our results show that, in this context, WIMPs as candidates for dark matter can work well both on large scales and on sub-galactic scales.Comment: 6 pages, 2 figures; typo corrected; to appear in PR

    Dynamical Relaxation of the Cosmological Constant and Matter Creation in the Universe

    Full text link
    In this Letter we discuss the issues of the graceful exit from inflation and of matter creation in the context of a recent scenario \cite{RHBrev} in which the back-reaction of long wavelength cosmological perturbations induces a negative contribution to the cosmological constant and leads to a dynamical relaxation of the bare cosmological constant. The initially large cosmological constant gives rise to primordial inflation, during which cosmological perturbations are stretched beyond the Hubble radius. The cumulative effect of the long wavelength fluctuations back-reacts on the background geometry in a form which corresponds to the addition of a negative effective cosmological constant to the energy-momentum tensor. In the absence of an effective scalar field driving inflation, whose decay can reheat the Universe, the challenge is to find a mechanism which produces matter at the end of the relaxation process. In this Letter, we point out that the decay of a condensate representing the order parameter for a ``flat'' direction in the field theory moduli space can naturally provide a matter generation mechanism. The order parameter is displaced from its vacuum value by thermal or quantum fluctuations, it is frozen until the Hubble constant drops to a sufficiently low value, and then begins to oscillate about its ground state. During the period of oscillation it can decay into Standard Model particles similar to how the inflaton decays in scalar-field-driven models of inflation.Comment: 6 page

    Observational Constraints on Theories with a Blue Spectrum of Tensor Modes

    Full text link
    Motivated by the string gas cosmological model, which predicts a blue tilt of the primordial gravitational wave spectrum, we examine the constraints imposed by current and planned observations on a blue tilted tensor spectrum. Starting from an expression for the primordial gravitational wave spectrum normalized using cosmic microwave background observations, pulsar timing, direct detection and nucleosynthesis bounds are examined. If we assume a tensor to scalar ratio on scales of the CMB which equals the current observational upper bound, we obtain from these current observations constraints on the tensor spectral index of nT≲0.79n_{T} \lesssim 0.79, nT≲0.53n_{T} \lesssim 0.53, and nT≲0.15n_{T} \lesssim 0.15 respectively.Comment: 12 pages, 1 figure, 2 references added, relationship of this work with Ref. 20 adde

    Unconventional Cosmology

    Full text link
    I review two cosmological paradigms which are alternative to the current inflationary scenario. The first alternative is the "matter bounce", a non-singular bouncing cosmology with a matter-dominated phase of contraction. The second is an "emergent" scenario, which can be implemented in the context of "string gas cosmology". I will compare these scenarios with the inflationary one and demonstrate that all three lead to an approximately scale-invariant spectrum of cosmological perturbations.Comment: 45 pages, 10 figures; invited lectures at the 6th Aegean Summer School "Quantum Gravity and Quantum Cosmology", Chora, Naxos, Greece, Sept. 12 - 17 2012, to be publ. in the proceedings; these lecture notes form an updated version of arXiv:1003.1745 and arXiv:1103.227

    On T-Duality in Brane Gas Cosmology

    Full text link
    In the context of homogeneous and isotropic superstring cosmology, the T-duality symmetry of string theory has been used to argue that for a background space-time described by dilaton gravity with strings as matter sources, the cosmological evolution of the Universe will be nonsingular. In this Letter we discuss how T-duality extends to brane gas cosmology, an approximation in which the background space-time is again described by dilaton gravity with a gas of branes as a matter source. We conclude that the arguments for nonsingular cosmological evolution remain valid.Comment: 8 pages, Appendix adde

    Topological Defects and Cosmology

    Get PDF
    Many particle physics models of matter admit solutions corresponding to stable or long-lived topological defects. In the context of standard cosmology it is then unavoidable that such defects will form during phase transitions in the very early Universe. Certain types of defects lead to disastrous consequences for cosmology, others may play a useful role, as possible seeds for the formation of structure in the Universe, or in mediating baryon number violating processes. In all cases, topological defects lead to a fruitful interplay between particle physics and cosmology.Comment: 17 pages, no figures; Invited lectures at WHEPP-5, IUCAA, Pune, India, Jan. 12 - 26 199

    Stability of an electroweak string with a fermion condensate

    Full text link
    A solution of the standard electroweak theory with a single lepton family is constructed, consisting of a cosmic string and a fermion condensate within its core. The stability of this system to small perturbations is examined, and it is found that stability is not enhanced relative to the bare electroweak string. The presence of quark zero modes is shown to violate the existence criteria for embedded defects.Comment: 13 pages, preprint DAMTP 94-9, SWAT/2
    • …
    corecore