424 research outputs found

    IDO-Mediated Tryptophan Degradation in the Pathogenesis of Malignant Tumor Disease

    Get PDF
    Immune escape is a fundamental trait of cancer in which the Th1-type cytokine interferon- γ (IFN-γ) seems to play a key role. Among other tumoricidal biochemical pathways, IFN-γ induces the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) in a variety of cells including macrophages, dendritic cells (DCs) and tumor cells. IDO activity has been shown to reflect the extent and the course in a plethora of malignancies including prostate, colorectal, pancreatic, cervical, endometrial, gastric, lung, bladder, ovarian, esophageal and renal cell carcinomas, glioblastomas, mesotheliomas, and melanomas. Furthermore IDO activity during malignant tumor diseases seems to be part of the tumoricidal immune defense strategy, which in the long run is detrimental to the host, when tryptophan deprivation and production of pro-apoptotic tryptophan catabolites counteract T-cell responsiveness

    Combining Theoretical and Experimental Techniques to Study Murine Heart Transplant Rejection

    Get PDF
    The quality of life of organ transplant recipients is compromised by complications associated with life-long immunosuppression, such as hypertension, diabetes, opportunistic infections, and cancer. Moreover, the absence of established tolerance to the transplanted tissues causes limited long-term graft survival rates. Thus, there is a great medical need to understand the complex immune system interactions that lead to transplant rejection so that novel and effective strategies of intervention that redirect the system toward transplant acceptance (while preserving overall immune competence) can be identified. This study implements a systems biology approach in which an experimentally based mathematical model is used to predict how alterations in the immune response influence the rejection of mouse heart transplants. Five stages of conventional mouse heart transplantation are modeled using a system of 13 ordinary differential equations that tracks populations of both innate and adaptive immunity as well as proxies for pro- and anti-inflammatory factors within the graft and a representative draining lymph node. The model correctly reproduces known experimental outcomes, such as indefinite survival of the graft in the absence of CD4(+) T cells and quick rejection in the absence of CD8(+) T cells. The model predicts that decreasing the translocation rate of effector cells from the lymph node to the graft delays transplant rejection. Increasing the starting number of quiescent regulatory T cells in the model yields a significant but somewhat limited protective effect on graft survival. Surprisingly, the model shows that a delayed appearance of alloreactive T cells has an impact on graft survival that does not correlate linearly with the time delay. This computational model represents one of the first comprehensive approaches toward simulating the many interacting components of the immune system. Despite some limitations, the model provides important suggestions of experimental investigations that could improve the understanding of rejection. Overall, the systems biology approach used here is a first step in predicting treatments and interventions that can induce transplant tolerance while preserving the capacity of the immune system to protect against legitimate pathogens

    A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury

    Get PDF
    Background Many diseases and pathological conditions are characterized by transient or constitutive overproduction of reactive oxygen species (ROS). ROS are causal for ischemia/reperfusion (IR)-associated tissue injury (IRI), a major contributor to organ dysfunction or failure. Preventing IRI with antioxidants failed in the clinic, most likely due to the difficulty to timely and efficiently target them to the site of ROS production and action. IR is also characterized by changes in the activity of intracellular signaling molecules including the stress kinase p38MAPK. While ROS can cause the activation of p38MAPK, we recently obtained in vitro evidence that p38MAPK activation is responsible for elevated mitochondrial ROS levels, thus suggesting a role for p38MAPK upstream of ROS and their damaging effects.<p></p> Results Here we identified p38MAPKα as the predominantly expressed isoform in HL-1 cardiomyocytes and siRNA-mediated knockdown demonstrated the pro-oxidant role of p38MAPKα signaling. Moreover, the knockout of the p38MAPK effector MAPKAP kinase 2 (MK2) reproduced the effect of inhibiting or knocking down p38MAPK. To translate these findings into a setting closer to the clinic a stringent kidney clamping model was used. p38MAPK activity increased upon reperfusion and p38MAPK inhibition by the inhibitor BIRB796 almost completely prevented severe functional impairment caused by IR. Histological and molecular analyses showed that protection resulted from decreased redox stress and apoptotic cell death.<p></p> Conclusions These data highlight a novel and important mechanism for p38MAPK to cause IRI and suggest it as a potential therapeutic target for prevention of tissue injury.<p></p&gt

    A Large-Scale Bank of Organ Donor Bone Marrow and Matched Mesenchymal Stem Cells for Promoting Immunomodulation and Transplant Tolerance

    Get PDF
    Induction of immune tolerance for solid organ and vascular composite allografts is the Holy Grail for transplantation medicine. This would obviate the need for life-long immunosuppression which is associated with serious adverse outcomes, such as infections, cancers, and renal failure. Currently the most promising means of tolerance induction is through establishing a mixed chimeric state by transplantation of donor hematopoietic stem cells; however, with the exception of living donor renal transplantation, the mixed chimerism approach has not achieved durable immune tolerance on a large scale in preclinical or clinical trials with other solid organs or vascular composite allotransplants (VCA). Ossium Health has established a bank of cryopreserved bone marrow (BM), termed “hematopoietic progenitor cell (HPC), Marrow,” recovered from deceased organ donor vertebral bodies. This new source for hematopoietic cell transplant will be a valuable resource for treating hematological malignancies as well as for inducing transplant tolerance. In addition, we have discovered and developed a large source of mesenchymal stem (stromal) cells (MSC) tightly associated with the vertebral body bone fragment byproduct of the HPC, Marrow recovery process. Thus, these vertebral bone adherent MSC (vBA-MSC) are matched to the banked BM obtained from each donor, as opposed to third-party MSC, which enhances safety and potentially efficacy. Isolation and characterization of vBA-MSC from over 30 donors has demonstrated that the cells are no different than traditional BM-MSC; however, their abundance is >1,000-fold higher than obtainable from living donor BM aspirates. Based on our own unpublished data as well as reports published by others, MSC facilitate chimerism, especially at limiting hematopoietic stem and progenitor cell (HSPC) numbers and increase safety by controlling and/or preventing graft-vs.-host-disease (GvHD). Thus, vBA-MSC have the potential to facilitate mixed chimerism, promote complementary peripheral immunomodulatory functions and increase safety of BM infusions. Both HPC, Marrow and vBA-MSC have potential use in current VCA and solid organ transplant (SOT) tolerance clinical protocols that are amenable to “delayed tolerance.” Current trials with HPC, Marrow are planned with subsequent phases to include vBA-MSC for tolerance of both VCA and SOT

    Correlation of Different Serum Biomarkers with Prediction of Early Pancreatic Graft Dysfunction Following Simultaneous Pancreas and Kidney Transplantation

    Get PDF
    Background: Despite recent advances and refinements in perioperative management of simultaneous pancreas–kidney transplantation (SPKT) early pancreatic graft dysfunction (ePGD) remains a critical problem with serious impairment of early and long-term graft function and outcome. Hence, we evaluated a panel of classical blood serum markers for their value in predicting early graft dysfunction in patients undergoing SPKT. Methods: From a prospectively collected database medical data of 105 patients undergoing SPKT between 1998 and 2018 at our center were retrospectively analyzed. The primary study outcome was the detection of occurrence of early pancreatic graft dysfunction (ePGD), the secondary study outcome was early renal graft dysfunction (eRGD) as well as all other outcome parameters associated with the graft function. In this context, ePGD was defined as pancreas graft-related complications including graft pancreatitis, pancreatic abscess/peritonitis, delayed graft function, graft thrombosis, bleeding, rejection and the consecutive need for re-laparotomy due to graft-related complications within 3 months. With regard to analyzing ePGD, serum levels of white blood cell count (WBC), C-reactive protein (CRP), procalcitonin (PCT), pancreatic lipase as well as neutrophil–lymphocyte ratio (NLR) and platelet–lymphocyte ratio (PLR) were measured preoperatively and at postoperative days (POD) 1, 2, 3 and 5. Further, peak serum levels of CRP and lipase during the first 72 h were evaluated. Receiver operating characteristics (ROC) curves were performed to assess their predictive value for ePGD and eRGD. Cut-off levels were calculated with the Youden index. Significant diagnostic biochemical cut-offs as well as other prognostic clinical factors were tested in a multivariate logistic regression model. Results: Of the 105 patients included, 43 patients (41%) and 28 patients (27%) developed ePGD and eRGD following SPKT, respectively. The mean WBC, PCT, NLR, PLR, CRP and lipase levels were significantly higher on most PODs in the ePGD group compared to the non-ePGD group. ROC analysis indicated that peak lipase (AUC: 0.82) and peak CRP levels (AUC: 0.89) were highly predictive for ePGD after SPKT. The combination of both achieved the highest AUC (0.92; p 150 IU/L (OR 2.9 (95% CI: 1.2–7.13), p = 0.021) and CRP levels of ≥ 180 ng/mL on POD 2 (OR 3.6 (95% CI: 1.54–8.34), p 150 ng/mL on POD 3 (OR 4.5 (95% CI: 1.7–11.4), p < 0.01) were revealed as independent biochemical predictive variables for ePGD after transplantation. Conclusions: In the current study, the combination of peak lipase and CRP levels were highly effective in predicting early pancreatic graft dysfunction development following SPKT. In contrast, for early renal graft dysfunction the predictive value of this parameter was less sensitive. Intensified monitoring of these parameters may be helpful for identifying patients at a higher risk of pancreatic ischemia reperfusion injury and various IRI- associated postoperative complications leading to ePGD and thus deteriorated outcome

    Insights from a Murine Aortic Transplantation Model

    Get PDF
    Transplant vasculopathy (TV) represents a major obstacle to long-term graft survival and correlates with severity of ischemia reperfusion injury (IRI). Donor administration of the nitric oxide synthases (NOS) co-factor tetrahydrobiopterin has been shown to prevent IRI. Herein, we analysed whether tetrahydrobiopterin is also involved in TV development. Using a fully allogeneic mismatched (BALB/c to C57BL/6) murine aortic transplantation model grafts subjected to long cold ischemia time developed severe TV with intimal hyperplasia (α-smooth muscle actin positive cells in the neointima) and endothelial activation (increased P-selectin expression). Donor pretreatment with tetrahydrobiopterin significantly minimised these changes resulting in only marginal TV development. Severe TV observed in the non-treated group was associated with increased protein oxidation and increased occurrence of endothelial NOS monomers in the aortic grafts already during graft procurement. Tetrahydrobiopterin supplementation of the donor prevented all these early oxidative changes in the graft. Non-treated allogeneic grafts without cold ischemia time and syngeneic grafts did not develop any TV. We identified early protein oxidation and impaired endothelial NOS homodimer formation as plausible mechanistic explanation for the crucial role of IRI in triggering TV in transplanted aortic grafts. Therefore, targeting endothelial NOS in the donor represents a promising strategy to minimise TV

    Cardiac Arrest Disrupts Caspase-1 and Patterns of Inflammatory Mediators Differently in Skin and Muscle Following Localized Tissue Injury in Rats: Insights from Data-Driven Modeling

    Get PDF
    Background: Trauma often co-occurs with cardiac arrest and hemorrhagic shock. Skin and muscle injuries often lead to significant inflammation in the affected tissue. The primary mechanism by which inflammation is initiated, sustained, and terminated is cytokine-mediated immune signaling, but this signaling can be altered by cardiac arrest. The complexity and context sensitivity of immune signaling in general has stymied a clear understanding of these signaling dynamics. Methodology/Principal findings: We hypothesized that advanced numerical and biological function analysis methods would help elucidate the inflammatory response to skin and muscle wounds in rats, both with and without concomitant shock. Based on multiplexed analysis of inflammatory mediators, we discerned a differential interleukin (IL)-1α and IL-18 signature in skin vs. muscle, which was suggestive of inflammasome activation in the skin. Immunoblotting revealed caspase-1 activation in skin but not muscle. Notably, IL-1α and IL-18, along with caspase-1, were greatly elevated in the skin following cardiac arrest, consistent with differential inflammasome activation. Conclusions/Significance: Tissue-specific activation of Caspase-1 and the NLRP3 inflammasome appear to be key factors in determining the type and severity of the inflammatory response to tissue injury, especially in the presence of severe shock, as suggested via data-driven modeling

    The changing paradigm of ethics in uterus transplantation: a systematic review

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154399/1/tri13548_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154399/2/tri13548.pd

    Expression and DNA methylation of TNF, IFNG and FOXP3 in colorectal cancer and their prognostic significance.

    Get PDF
    BACKGROUND: Colorectal cancer (CRC) progression is associated with suppression of host cell-mediated immunity and local immune escape mechanisms. Our aim was to assess the immune function in terms of expression of TNF, IFNG and FOXP3 in CRC. METHODS: Sixty patients with CRC and 15 matched controls were recruited. TaqMan quantitative PCR and methylation-specific PCR was performed for expression and DNA methylation analysis of TNF, IFNG and FOXP3. Survival analysis was performed over a median follow-up of 48 months. RESULTS: TNF was suppressed in tumour and IFNG was suppressed in peripheral blood mononuclear cells (PBMCs) of patients with CRC. Tumours showed enhanced expression of FOXP3 and was significantly higher when tumour size was >38 mm (median tumour size; P=0.006, Mann-Whitney U-test). Peripheral blood mononuclear cell IFNG was suppressed in recurrent CRC (P=0.01). Methylated TNFpromoter (P=0.003) and TNFexon1 (P=0.001) were associated with significant suppression of TNF in tumours. Methylated FOXP3cpg was associated with significant suppression of FOXP3 in both PBMC (P=0.018) and tumours (P=0.010). Reduced PBMC FOXP3 expression was associated with significantly worse overall survival (HR=8.319, P=0.019). CONCLUSIONS: We have detected changes in the expression of immunomodulatory genes that could act as biomarkers for prognosis and future immunotherapeutic strategies
    corecore