53 research outputs found

    Multicenter study evaluating the Vitek MS system for identification of medically important yeasts

    Get PDF
    The optimal management of fungal infections is correlated with timely organism identification. Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) is revolutionizing the identification of yeasts isolated from clinical specimens. We present a multicenter study assessing the performance of the Vitek MS system (bioMérieux) in identifying medically important yeasts. A collection of 852 isolates was tested, including 20 Candida species (626 isolates, including 58 C. albicans, 62 C. glabrata, and 53 C. krusei isolates), 35 Cryptococcus neoformans isolates, and 191 other clinically relevant yeast isolates; in total, 31 different species were evaluated. Isolates were directly applied to a target plate, followed by a formic acid overlay. Mass spectra were acquired using the Vitek MS system and were analyzed using the Vitek MS v2.0 database. The gold standard for identification was sequence analysis of the D2 region of the 26S rRNA gene. In total, 823 isolates (96.6%) were identified to the genus level and 819 isolates (96.1%) were identified to the species level. Twenty-four isolates (2.8%) were not identified, and five isolates (0.6%) were misidentified. Misidentified isolates included one isolate of C. albicans (n = 58) identified as Candida dubliniensis, one isolate of Candida parapsilosis (n = 73) identified as Candida pelliculosa, and three isolates of Geotrichum klebahnii (n = 6) identified as Geotrichum candidum. The identification of clinically relevant yeasts using MS is superior to the phenotypic identification systems currently employed in clinical microbiology laboratories

    Comparison of Two Commercial Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Systems for Identification of Nontuberculous Mycobacteria.

    Get PDF
    Objectives: This multi-center study’s aim was to assess the performance of two commercially-available matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems in identifying a challenge collection of clinically-relevant nontuberculous mycobacteria (NTM). Methods: NTM clinical isolates (N=244) belonging to 23 species/subspecies were identified by gene sequencing and analyzed using the Bruker Biotyper with Mycobacterial Library v5.0.0 and the bioMérieux VITEK MS with v3.0 database. Results: Using the Bruker or bioMérieux systems, 92% or 95% of NTM strains, respectively, were identified at least to the complex/group level; 62% and 57%, respectively, were identified to the highest taxonomic level. Differentiation between members of the M. abscessus, M. fortuitum, M. mucogenicum, M. avium, and M. terrae complexes/groups was problematic for both systems, as was identification of M. chelonae for the Bruker system. Conclusions: Both systems identified most NTM isolates to the group/complex level, and many to the highest taxonomic level. Performance was comparable

    Case 27-2011: A 17-Year-Old Boy with Abdominal Pain and Weight Loss

    Get PDF
    Pr e sen tat ion of C a se Dr. Nina Mayer (Medicine-Pediatrics): A 17-year-old boy was seen in the pediatric gastroenterology clinic of this hospital because of abdominal pain and weight loss. The patient had been well until approximately 6 weeks earlier, when intermittent crampy abdominal pain developed. Approximately 3 weeks later, nonbloody diarrhea developed and lasted for a week, associated with one episode of emesis. Thereafter, abdominal pain occurred daily, was predominantly located in the right lower quadrant, radiated to the right flank, and was associated with lower back discomfort, borborygmi, and constipation. During the fourth week of illness, after the diarrhea had resolved, the patient saw his primary care physician. Serum levels of glucose, alanine aminotransferase, and thyrotropin were normal, as were tests of renal function. Tests for tissue transglutaminase IgA antibodies, hepatitis A virus, hepatitis C virus, and the human immunodeficiency virus (HIV) were negative. Results of tests for serum antibodies to Epstein-Barr virus (EBV) were consistent with past infection; testing was positive for hepatitis B virus surface antibody and negative for hepatitis B surface antigen, indicating immunity or past infection. Other results are shown in Two weeks later, the patient was seen in the pediatric gastroenterology clinic at this hospital. He rated the abdominal pain at 5 on a scale of 0 to 10, with 10 indicating the most severe pain. He reported one bowel movement of hard stool daily, and one episode of blood streaking on the stool after straining, with no mucus. He reported that he had lost 18.2 kg during the previous 2 years. The first 11 to 12 kg was intentional; however, during the 6 weeks before this evaluation, additional weight loss had occurred unintentionally. The body-mass index (the weight in kilograms divided by the square of the height in meters) had reportedly decreased from 27.0 (>95th percentile for his age) to 20.5 (25th to 50th percentile). He reported night sweats with chills but no fever. The patient had visited relatives in Haiti approximately 4 years earlier for 1 week; he reported no exposure to persons with respiratory or gastrointestinal symptoms while there or recently. Skin tests for tuberculosis were reportedly negative befor

    Efficient Gene Targeting by Homologous Recombination in Rat Embryonic Stem Cells

    Get PDF
    The rat is the preferred experimental animal in many biological studies. With the recent derivation of authentic rat embryonic stem (ES) cells it is now feasible to apply state-of-the art genetic engineering in this species using homologous recombination. To establish whether rat ES cells are amenable to in vivo recombination, we tested targeted disruption of the hypoxanthine phosphoribosyltransferase (hprt) locus in ES cells derived from both inbred and outbred strains of rats. Targeting vectors that replace exons 7 and 8 of the hprt gene with neomycinR/thymidine kinase selection cassettes were electroporated into male Fisher F344 and Sprague Dawley rat ES cells. Approximately 2% of the G418 resistant colonies also tolerated selection with 6-thioguanine, indicating inactivation of the hprt gene. PCR and Southern blot analysis confirmed correct site-specific targeting of the hprt locus in these clones. Embryoid body and monolayer differentiation of targeted cell lines established that they retained differentiation potential following targeting and selection. This report demonstrates that gene modification via homologous recombination in rat ES cells is efficient, and should facilitate implementation of targeted, genetic manipulation in the rat

    Non-Integrative Lentivirus Drives High-Frequency cre-Mediated Cassette Exchange in Human Cells

    Get PDF
    Recombinase mediated cassette exchange (RMCE) is a two-step process leading to genetic modification in a specific genomic target sequence. The process involves insertion of a docking genetic cassette in the genome followed by DNA transfer of a second cassette flanked by compatible recombination signals and expression of the recombinase. Major technical drawbacks are cell viability upon transfection, toxicity of the enzyme, and the ability to target efficiently cell types of different origins. To overcome such drawbacks, we developed an RMCE assay that uses an integrase-deficient lentivirus (IDLV) vector in the second step combined with promoterless trapping of double selectable markers. Additionally, recombinase expression is self-limiting as a result of the exchangeable reaction, thus avoiding toxicity. Our approach provides proof-of-principle of a simple and novel strategy with expected wide applicability modelled on a human cell line with randomly integrated copies of a genetic landing pad. This strategy does not present foreseeable limitations for application to other cell systems modified by homologous recombination. Safety, efficiency, and simplicity are the major advantages of our system, which can be applied in low-to-medium throughput strategies for screening of cDNAs, non-coding RNAs during functional genomic studies, and drug screening

    Controlling particle size in the Stöber process and incorporation of calcium

    Get PDF
    The Stӧber process is commonly used for synthesising spherical silica particles. This article reports the first comprehensive study of how the process variables can be used to obtain monodispersed particles of specific size. The modal particle size could be selected within in the range 20 – 500 nm. There is great therapeutic potential for bioactive glass nanoparticles, as they can be internalised within cells and perform sustained delivery of active ions. Biodegradable bioactive glass nanoparticles are also used in nanocomposites. Modification of the Stӧber process so that the particles can contain cations such as calcium, while maintaining monodispersity, is desirable. Here, while calcium incorporation is achieved, with a homogenous distribution, careful characterisation shows that much of the calcium is not incorporated. A maximum of 10 mol% CaO can be achieved and previous reports are likely to have overestimated the amount of calcium incorporated

    Differential In Vitro Effects of Intravenous versus Oral Formulations of Silibinin on the HCV Life Cycle and Inflammation

    Get PDF
    Silymarin prevents liver disease in many experimental rodent models, and is the most popular botanical medicine consumed by patients with hepatitis C. Silibinin is a major component of silymarin, consisting of the flavonolignans silybin A and silybin B, which are insoluble in aqueous solution. A chemically modified and soluble version of silibinin, SIL, has been shown to potently reduce hepatitis C virus (HCV) RNA levels in vivo when administered intravenously. Silymarin and silibinin inhibit HCV infection in cell culture by targeting multiple steps in the virus lifecycle. We tested the hepatoprotective profiles of SIL and silibinin in assays that measure antiviral and anti-inflammatory functions. Both mixtures inhibited fusion of HCV pseudoparticles (HCVpp) with fluorescent liposomes in a dose-dependent fashion. SIL inhibited 5 clinical genotype 1b isolates of NS5B RNA dependent RNA polymerase (RdRp) activity better than silibinin, with IC50 values of 40–85 µM. The enhanced activity of SIL may have been in part due to inhibition of NS5B binding to RNA templates. However, inhibition of the RdRps by both mixtures plateaued at 43–73%, suggesting that the products are poor overall inhibitors of RdRp. Silibinin did not inhibit HCV replication in subgenomic genotype 1b or 2a replicon cell lines, but it did inhibit JFH-1 infection. In contrast, SIL inhibited 1b but not 2a subgenomic replicons and also inhibited JFH-1 infection. Both mixtures inhibited production of progeny virus particles. Silibinin but not SIL inhibited NF-κB- and IFN-B-dependent transcription in Huh7 cells. However, both mixtures inhibited T cell proliferation to similar degrees. These data underscore the differences and similarities between the intravenous and oral formulations of silibinin, which could influence the clinical effects of this mixture on patients with chronic liver diseases

    New Mouse Lines for the Analysis of Neuronal Morphology Using CreER(T)/loxP-Directed Sparse Labeling

    Get PDF
    BACKGROUND: Pharmacologic control of Cre-mediated recombination using tamoxifen-dependent activation of a Cre-estrogen receptor ligand binding domain fusion protein [CreER(T)] is widely used to modify and/or visualize cells in the mouse. METHODS AND FINDINGS: We describe here two new mouse lines, constructed by gene targeting to the Rosa26 locus to facilitate Cre-mediated cell modification. These lines should prove particularly useful in the context of sparse labeling experiments. The R26rtTACreER line provides ubiquitous expression of CreER under transcriptional control by the tetracycline reverse transactivator (rtTA); dual control by doxycycline and tamoxifen provides an extended dynamic range of Cre-mediated recombination activity. The R26IAP line provides high efficiency Cre-mediated activation of human placental alkaline phosphatase (hPLAP), complementing the widely used, but low efficiency, Z/AP line. By crossing with mouse lines that direct cell-type specific CreER expression, the R26IAP line has been used to produce atlases of labeled cholinergic and catecholaminergic neurons in the mouse brain. The R26IAP line has also been used to visualize the full morphologies of retinal dopaminergic amacrine cells, among the largest neurons in the mammalian retina. CONCLUSIONS: The two new mouse lines described here expand the repertoire of genetically engineered mice available for controlled in vivo recombination and cell labeling using the Cre-lox system

    The Exopolysaccharide Matrix Modulates the Interaction between 3D Architecture and Virulence of a Mixed-Species Oral Biofilm

    Get PDF
    Virulent biofilms are responsible for a range of infections, including oral diseases. All biofilms harbor a microbial-derived extracellular-matrix. The exopolysaccharides (EPS) formed on tooth-pellicle and bacterial surfaces provide binding sites for microorganisms; eventually the accumulated EPS enmeshes microbial cells. The metabolic activity of the bacteria within this matrix leads to acidification of the milieu. We explored the mechanisms through which the Streptococcus mutans-produced EPS-matrix modulates the three-dimensional (3D) architecture and the population shifts during morphogenesis of biofilms on a saliva-coated-apatitic surface using a mixed-bacterial species system. Concomitantly, we examined whether the matrix influences the development of pH-microenvironments within intact-biofilms using a novel 3D in situ pH-mapping technique. Data reveal that the production of the EPS-matrix helps to create spatial heterogeneities by forming an intricate network of exopolysaccharide-enmeshed bacterial-islets (microcolonies) through localized cell-to-matrix interactions. This complex 3D architecture creates compartmentalized acidic and EPS-rich microenvironments throughout the biofilm, which triggers the dominance of pathogenic S. mutans within a mixed-species system. The establishment of a 3D-matrix and EPS-enmeshed microcolonies were largely mediated by the S. mutans gtfB/gtfC genes, expression of which was enhanced in the presence of Actinomyces naeslundii and Streptococcus oralis. Acidic pockets were found only in the interiors of bacterial-islets that are protected by EPS, which impedes rapid neutralization by buffer (pH 7.0). As a result, regions of low pH (<5.5) were detected at specific locations along the surface of attachment. Resistance to chlorhexidine was enhanced in cells within EPS-microcolony complexes compared to those outside such structures within the biofilm. Our results illustrate the critical interaction between matrix architecture and pH heterogeneity in the 3D environment. The formation of structured acidic-microenvironments in close proximity to the apatite-surface is an essential factor associated with virulence in cariogenic-biofilms. These observations may have relevance beyond the mouth, as matrix is inherent to all biofilms

    False-Negative Results Obtained with the Gen-Probe Amplified Mycobacterium tuberculosis Direct Test Caused by Unrecognized Inhibition of the Amplification Reactionâ–¿

    No full text
    The Gen-Probe Amplified Mycobacterium tuberculosis direct test is widely used in the diagnosis of tuberculosis. Specimens may contain amplification inhibitors, potentially leading to false-negative results if unrecognized. We report a failure to detect inhibition, despite adherence to the inhibition testing guidelines provided on the label, and recommend changes
    • …
    corecore