1,734 research outputs found

    The Carnivore Connection Hypothesis: Revisited

    Get PDF
    The “Carnivore Connection” hypothesizes that, during human evolution, a scarcity of dietary carbohydrate in diets with low plant : animal subsistence ratios led to insulin resistance providing a survival and reproductive advantage with selection of genes for insulin resistance. The selection pressure was relaxed at the beginning of the Agricultural Revolution when large quantities of cereals first entered human diets. The “Carnivore Connection” explains the high prevalence of intrinsic insulin resistance and type 2 diabetes in populations that transition rapidly from traditional diets with a low-glycemic load, to high-carbohydrate, high-glycemic index diets that characterize modern diets. Selection pressure has been relaxed longest in European populations, explaining a lower prevalence of insulin resistance and type 2 diabetes, despite recent exposure to famine and food scarcity. Increasing obesity and habitual consumption of high-glycemic-load diets worsens insulin resistance and increases the risk of type 2 diabetes in all populations

    International Tables of Glycemic Index and Glycemic Load Values: 2008

    Get PDF
    OBJECTIVE—To systematically tabulate published and unpublished sources of reliable glycemic index (GI) values

    Effect of the Glycemic Index of Carbohydrates on Acne vulgaris

    Get PDF
    Acne vulgaris may be improved by dietary factors that increase insulin sensitivity. We hypothesized that a low-glycemic index diet would improve facial acne severity and insulin sensitivity. Fifty-eight adolescent males (mean age ± standard deviation 16.5 ± 1.0 y and body mass index 23.1 ± 3.5 kg/m2) were alternately allocated to high or low glycemic index diets. Severity of inflammatory lesions on the face, insulin sensitivity (homeostasis modeling assessment of insulin resistance), androgens and insulin-like growth factor-1 and its binding proteins were assessed at baseline and at eight weeks, a period corresponding to the school term. Forty-three subjects (n = 23 low glycemic index and n = 20 high glycemic index) completed the study. Diets differed significantly in glycemic index (mean ± standard error of the mean, low glycemic index 51 ± 1 vs. high glycemic index 61 ± 2, p = 0.0002), but not in macronutrient distribution or fiber content. Facial acne improved on both diets (low glycemic index −26 ± 6%, p = 0.0004 and high glycemic index −16 ± 7%, p = 0.01), but differences between diets did not reach significance. Change in insulin sensitivity was not different between diets (low glycemic index 0.2 ± 0.1 and high glycemic index 0.1 ± 0.1, p = 0.60) and did not correlate with change in acne severity (Pearson correlation r = −0.196, p = 0.244). Longer time frames, greater reductions in glycemic load or/and weight loss may be necessary to detect improvements in acne among adolescent boys

    The Polarized 3-He Target

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Suppressed radio emission in supercluster galaxies: enhanced ram pressure in merging clusters?

    Full text link
    The environmental influence on the 1.4 GHz continuum radio emission of galaxies is analyzed in a 600 deg2 region of the local Universe containing the Shapley Supercluster (SSC). Galaxies in the FLASH and 6dFGS redshift surveys are cross-identified with NVSS radio sources, selected in a subsample doubly complete in volume and luminosity. Environmental effects are studied through a smoothed density field (normalized with random catalogs with the same survey edges and redshift selection function) and the distance to the nearest cluster (R/r200, where r200 is the virial radius, whose relation to the aperture velocity dispersion is quantified). The fraction of high radio loudness (R_K=L_radio/L_K) galaxies in the 10 Mpc Abell 3558 cluster complex at the core of the SSC (SSC-CR) is half as large than elsewhere. In the SSC-CR, R_K is anti-correlated with the density of the large-scale environment and correlated with R/r200: central brightest cluster galaxies (BCGs) in the SSC-CR are 10x less radio-loud than BCGs elsewhere, with signs of suppressed radio loudness in the SSC-CR also present beyond the BCGs, out to at least 0.3 r200. This correlation is nearly as strong as the tight correlation of L_K with R/r200 (K-luminosity segregation), inside the SSC-CR. The suppression of radio loudness in SSC-CR BCGs can be attributed to cluster-cluster mergers that destroy the cool core and thus the supply of gas to the central AGN. We analytically demonstrate that the low radio loudness of non-BCG galaxies within SSC-CR clusters cannot be explained by direct major galaxy mergers or rapid galaxy flyby collisions, but by the loss of gas supply through the enhanced ram pressure felt when these galaxies cross the shock front between the 2 merging clusters and are later subjected to the stronger wind from the 2nd cluster.Comment: Version consolidated with Erratum A&A 499, 4

    The radio and IR counterparts of the ring nebula around HD211564

    Get PDF
    We report the detection of the radio and infrared counterparts of the ring nebula around the WN3(h) star HD211564 (WR152), located to the southwest of the HII region Sh2132. Using radio continuum data from the Canadian Galactic Plane Survey, we identified the radio counterparts of the two concentric rings, of about 9' and 16' in radius, related to the star. After applying a filling factor f = 0.05-0.12, electron densities and ionized masses are in the range 10-16 cm^-3 and 450-700 Mo, respectively. The analysis of the HI gas emission distribution allowed the identification of 5900 Mo of neutral atomic gas with velocities between -52 and -43 km/s probably linked to the nebula. The region of the nebula is almost free of molecular gas. Only four small clumps were detected, with a total molecular mass of 790 Mo. About 310 Mo are related to a small infrared shell-like source linked to the inner ring, which is also detected in the MSX band A. An IRAS YSO candidate is detected in coincidence with the shell-like IR source. We suggest that the optical nebula and its neutral counterparts originated from the stellar winds from the WR star and its massive progenitor, and are evolving in the envelope of a slowly expanding shell centered at (l,b) = (102 30, -0 50), of about 31 pc in radius. The bubble's energy conversion efficiency is in agreement with recent numerical analysis and with observational results.Comment: 11 pages, 7 figures, accepted in MNRA

    The dynamical Green's function and an exact optical potential for electron-molecule scattering including nuclear dynamics

    Get PDF
    We derive a rigorous optical potential for electron-molecule scattering including the effects of nuclear dynamics by extending the common many-body Green's function approach to optical potentials beyond the fixed-nuclei limit for molecular targets. Our formalism treats the projectile electron and the nuclear motion of the target molecule on the same footing whereby the dynamical optical potential rigorously accounts for the complex many-body nature of the scattering target. One central result of the present work is that the common fixed-nuclei optical potential is a valid adiabatic approximation to the dynamical optical potential even when projectile and nuclear motion are (nonadiabatically) coupled as long as the scattering energy is well below the electronic excitation thresholds of the target. For extremely low projectile velocities, however, when the cross sections are most sensitive to the scattering potential, we expect the influences of the nuclear dynamics on the optical potential to become relevant. For these cases, a systematic way to improve the adiabatic approximation to the dynamical optical potential is presented that yields non-local operators with respect to the nuclear coordinates.Comment: 22 pages, no figures, accepted for publ., Phys. Rev.

    Tensor Analyzing Powers for Quasi-Elastic Electron Scattering from Deuterium

    Get PDF
    We report on a first measurement of tensor analyzing powers in quasi-elastic electron-deuteron scattering at an average three-momentum transfer of 1.7 fm−1^{-1}. Data sensitive to the spin-dependent nucleon density in the deuteron were obtained for missing momenta up to 150 MeV/cc with a tensor polarized 2^2H target internal to an electron storage ring. The data are well described by a calculation that includes the effects of final-state interaction, meson-exchange and isobar currents, and leading-order relativistic contributions.Comment: 4 pages, 3 figure
    • 

    corecore