201 research outputs found

    Impacts of a Cascadia Subduction Zone Earthquake on Water Levels and Wetlands of the Lower Columbia River and Estuary

    Get PDF
    Subsidence after a subduction zone earthquake can cause major changes in estuarine bathymetry. Here, we quantify the impacts of earthquake-induced subsidence on hydrodynamics and habitat distributions in a major system, the lower Columbia River Estuary, using a hydrodynamic and habitat model. Model results indicate that coseismic subsidence increases tidal range, with the smallest changes at the coast and a maximum increase of ∼10% in a region of topographic convergence. All modeled scenarios reduce intertidal habitat by 24%–25% and shifts ∼93% of estuarine wetlands to lower-elevation habitat bands. Incorporating dynamic effects of tidal change from subsidence yields higher estimates of remaining habitat by multiples of 0–3.7, dependent on the habitat type. The persistent tidal change and chronic habitat disturbance after an earthquake poses strong challenges for estuarine management and wetland restoration planning, particularly when coupled with future sea-level rise effects

    Mechanisms of CFTR Functional Variants That Impair Regulated Bicarbonate Permeation and Increase Risk for Pancreatitis but Not for Cystic Fibrosis

    Get PDF
    CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev) cause complete loss of CFTR function and result in cystic fibrosis (CF), a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize that those CFTR mutations that disrupt the WNK1-SPAK activation mechanisms cause a selective, bicarbonate defect in channel function (CFTRBD) affecting organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas, nasal sinus, vas deferens) but do not cause typical CF. To understand the structural and functional requirements of the CFTR bicarbonate-preferring channel, we (a) screened 984 well-phenotyped pancreatitis cases for candidate CFTRBD mutations from among 81 previously described CFTR variants; (b) conducted electrophysiology studies on clones of variants found in pancreatitis but not CF; (c) computationally constructed a new, complete structural model of CFTR for molecular dynamics simulation of wild-type and mutant variants; and (d) tested the newly defined CFTRBD variants for disease in non-pancreas organs utilizing CFTR for bicarbonate secretion. Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N) not associated with typical CF were associated with pancreatitis (OR 1.5, p = 0.002). Clones expressed in HEK 293T cells had normal chloride but not bicarbonate permeability and conductance with WNK1-SPAK activation. Molecular dynamics simulations suggest physical restriction of the CFTR channel and altered dynamic channel regulation. Comparing pancreatitis patients and controls, CFTRBD increased risk for rhinosinusitis (OR 2.3, p<0.005) and male infertility (OR 395, p<<0.0001). WNK1-SPAK pathway-activated increases in CFTR bicarbonate permeability are altered by CFTRBD variants through multiple mechanisms. CFTRBD variants are associated with clinically significant disorders of the pancreas, sinuses, and male reproductive system.Fil: LaRusch, Jessica. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Jung, Jinsei. Yonsei University College of Medicine; Corea del SurFil: General, Ignacio. University of Pittsburgh; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lewis, Michele D.. Mayo Clinic. Division of Gastroenterology and Hepatology; Estados UnidosFil: Park, Hyun Woo. Yonsei University College of Medicine; Corea del SurFil: Brand, Randall E.. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Gelrud, Andres. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Anderson, Michelle A.. University of Michigan; Estados UnidosFil: Banks, Peter A.. Brigham and Women’s Hospital. Division of Gastroenterology; Estados UnidosFil: Conwell, Darwin. Brigham and Women’s Hospital. Division of Gastroenterology; Estados UnidosFil: Lawrence, Christopher. Medical University of South Carolina; Estados UnidosFil: Romagnuolo, Joseph. Medical University of South Carolina; Estados UnidosFil: Baillie, John. University of Duke; Estados UnidosFil: Alkaade, Samer. St. Louis University. School of Medicine; Estados UnidosFil: Cote, Gregory. Indiana University; Estados UnidosFil: Gardner, Timothy B.. Dartmouth-Hitchcock Medical Center; Estados UnidosFil: Amann, Stephen T.. North Mississippi Medical Center; Estados UnidosFil: Slivka, Adam. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Sandhu, Bimaljit. Virginia Commonwealth University Medical Center; Estados UnidosFil: Aloe, Amy. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Kienholz, Michelle L.. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Yadav, Dhiraj. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Barmada, M. Michael. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Bahar, Ivet. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: Lee, Min Goo. Yonsei University College of Medicine; Corea del SurFil: Whitcomb, David C.. Univeristy of Pittsburgh. School of Medicine; Estados UnidosFil: North American Pancreatitis Study Group. No especifica

    PARP-1 regulates DNA repair factor availability.

    Get PDF
    PARP-1 holds major functions on chromatin, DNA damage repair and transcriptional regulation, both of which are relevant in the context of cancer. Here, unbiased transcriptional profiling revealed the downstream transcriptional profile of PARP-1 enzymatic activity. Further investigation of the PARP-1-regulated transcriptome and secondary strategies for assessing PARP-1 activity in patient tissues revealed that PARP-1 activity was unexpectedly enriched as a function of disease progression and was associated with poor outcome independent of DNA double-strand breaks, suggesting that enhanced PARP-1 activity may promote aggressive phenotypes. Mechanistic investigation revealed that active PARP-1 served to enhance E2F1 transcription factor activity, and specifically promoted E2F1-mediated induction of DNA repair factors involved in homologous recombination (HR). Conversely, PARP-1 inhibition reduced HR factor availability and thus acted to induce or enhance BRCA-ness . These observations bring new understanding of PARP-1 function in cancer and have significant ramifications on predicting PARP-1 inhibitor function in the clinical setting

    Drivers of the Late Ordovician Mass Extinction: redox, volcanism, atmospheric oxygen/carbon dioxide and/or glaciation

    Get PDF
    The Late Ordovician marks an epoch of substantial change during Earthâs geologic history. It documents the first mass extinction event of the Phanerozoic, which wiped out a plethora of marine genera. Though signatures of the extinction event are quite evident on the species level, there are many underlying uncertainties as to which factors drove the near destruction of Ordovician marine life. The exact causes and contributing factors of the Late Ordovician Mass Extinction (LOME) are highly debated. Previous studies propose processes such as redox shifts, volcanism, deep-water anoxia, low atmospheric oxygen, or excess CO2 as significant influencers. In this study, we utilized a multi-archive/proxy approach in reconstructing paleoenvironmental, stratigraphic, chronologic, and diagenetic signatures of halite and carbonate sequences from two localities containing the OrdovicianâSilurian boundary. Our preliminary findings suggest that an abrupt, multi-pulsed glaciation was probably the main driver of the LOME. However, the exact duration, intensity, and number of cooling pulses are still up to interpretation and will require additional geochemical work to paint the entire picture. Samples were obtained from two localities of similar low paleo-latitudes. Marine halite and carbonate were obtained from the upper Ordovician Red Head Rapids Formation, Hudson Bay Basin, Canada. Another suite of halite was collected from the Ordovician/Silurian Mallowa Salt Formation, Canning Basin, Western Australia. The diagenetic integrity of Red Head Rapids halite and carbonate were assessed through strontium isotope analysis. Since the strontium isotope remains in equilibrium with seawater, we can cross-analyse the preservation potentials of both marine archives. All sample results lay within the ± 0.00006 â° natural variation of 87Sr/86Sr measured in modern marine counterparts, providing evidence of primary material and accurate paleo-interpretations. Trace element chemistry study was conducted on halite samples from both localities. Previous studies suggested that the spikes of Hg, Mo, and U concentrations signify the aftermath of a greenhouse event that triggered the expansion of deep-water anoxia. Furthermore, heightened volcanic activity led to significant greenhouse gas emissions and produced a period of warming. Instead, our halite Hg, Mo and U concentrations are extremely low, many below detection limits, which correspond to glacial signatures of an icehouse. Interpretation of the sedimentary cerium anomaly of the Red Head Rapids and Mallowa salts also revealed characteristics of an oxygenated marine environment, with all calculated values below the threshold, typical of anoxia. Rigorous halite fluid inclusion analysis was conducted to qualitatively distinguish between primary and secondary material based on size, shape, orientation, and multiple growth pat­terns. Microthermometry homogenization temperatures derived quantitative distinctions between primary and secondary fluid inclusions of preserved and altered material, respectively. Paleotemperatures of primary fluid inclusions exhibited oscillations that were evident of daily/seasonal variation of inter- and/or glacial times, averaging approximately 24.2°C ± 0.5°C for the latest-Ordovicianâearliest-Silurian. Apart from minor fluctuations, we noticed up to four major cool­ing pulses associated with the major glaciation characterizing the latest-Ordovicianâearliest-Silurian time

    Bioenergetic profile of human coronary artery smooth muscle cells and effect of metabolic intervention

    Get PDF
    Bioenergetics of artery smooth muscle cells is critical in cardiovascular health and disease. An acute rise in metabolic demand causes vasodilation in systemic circulation while a chronic shift in bioenergetic profile may lead to vascular diseases. A decrease in intracellular ATP level may trigger physiological responses while dedifferentiation of contractile smooth muscle cells to a proliferative and migratory phenotype is often observed during pathological processes. Although it is now possible to dissect multiple building blocks of bioenergetic components quantitatively, detailed cellular bioenergetics of artery smooth muscle cells is still largely unknown. Thus, we profiled cellular bioenergetics of human coronary artery smooth muscle cells and effects of metabolic intervention. Mitochondria and glycolysis stress tests utilizing Seahorse technology revealed that mitochondrial oxidative phosphorylation accounted for 54.5% of ATP production at rest with the remaining 45.5% due to glycolysis. Stress tests also showed that oxidative phosphorylation and glycolysis can increase to a maximum of 3.5 fold and 1.25 fold, respectively, indicating that the former has a high reserve capacity. Analysis of bioenergetic profile indicated that aging cells have lower resting oxidative phosphorylation and reduced reserve capacity. Intracellular ATP level of a single cell was estimated to be over 1.1 mM. Application of metabolic modulators caused significant changes in mitochondria membrane potential, intracellular ATP level and ATP:ADP ratio. The detailed breakdown of cellular bioenergetics showed that proliferating human coronary artery smooth muscle cells rely more or less equally on oxidative phosphorylation and glycolysis at rest. These cells have high respiratory reserve capacity and low glycolysis reserve capacity. Metabolic intervention influences both intracellular ATP concentration and ATP:ADP ratio, where subtler changes may be detected by the latter
    • …
    corecore