3,246 research outputs found

    Anisotropy probe of galactic and extra-galactic Dark Matter annihilations

    Get PDF
    We study the flux and the angular power spectrum of gamma-rays produced by Dark Matter (DM) annihilations in the Milky Way (MW) and in extra-galactic halos. The annihilation signal receives contributions from: a) the smooth MW halo, b) resolved and unresolved substructures in the MW, c) external DM halos at all redshifts, including d) their substructures. Adopting a self-consistent description of local and extra-galactic substructures, we show that the annihilation flux from substructures in the MW dominates over all the other components for angles larger than O(1) degrees from the Galactic Center, unless an extreme prescription is adopted for the substructures concentration. We also compute the angular power spectrum of gamma-ray anisotropies and find that, for an optimistic choice of the particle physics parameters, an interesting signature of DM annihilations could soon be discovered by the Fermi LAT satellite at low multipoles, l<100, where the dominant contribution comes from MW substructures with mass M>10^4 solar masses. For the substructures models we have adopted, we find that the contribution of extra-galactic annihilations is instead negligible at all scales.Comment: 14 pages, 7 figure

    Dark Matter Annihilation in Substructures Revised

    Full text link
    Upcoming Îł\gamma-ray satellites will search for Dark Matter annihilations in Milky Way substructures (or 'clumps'). The prospects for detecting these objects strongly depend on the assumptions made on the distribution of Dark Matter in substructures, and on the distribution of substructures in the Milky Way halo. By adopting simplified, yet rather extreme, prescriptions for these quantities, we compute the number of sources that can be detected with upcoming experiments such as GLAST, and show that, for the most optimistic particle physics setup (mχ=40m_\chi=40 GeV and annihilation cross section σv=3×10−26\sigma v = 3 \times 10^{-26} cm3^3 s−1^{-1}), the result ranges from zero to ∌\sim hundred sources, all with mass above 105M⊙10^{5}M\odot. However, for a fiducial DM candidate with mass mχ=100m_\chi=100 GeV and σv=10−26\sigma v = 10^{-26} cm3^3 s−1^{-1}, at most a handful of large mass substructures can be detected at 5σ5 \sigma, with a 1-year exposure time, by a GLAST-like experiment. Scenarios where micro-clumps (i.e. clumps with mass as small as 10−6M⊙10^{-6}M\odot) can be detected are severely constrained by the diffuse Îł\gamma-ray background detected by EGRET.Comment: Version accepted for publication in MNRAS. Other subhalos mass function slopes added. All-sky analysis performed. Boost factors added. High resolution figures for all models in http://www2.iap.fr/users/bertone/Clumps

    Modeling the QSO luminosity and spatial clustering at low redshifts

    Full text link
    We investigate the ability of hierarchical models of QSO formation and evolution to match the observed luminosity, number counts and spatial clustering of quasars at redshift z<2. These models assume that the QSO emission is triggered by galaxy mergers, that the mass of the central black hole correlates with halo properties and that quasars shine at their Eddington luminosity except, perhaps, during the very early stages of evolution. We find that models based on simple analytic approximations successfully reproduce the observed B-band QSO luminosity function at all redshifts, provided that some mechanisms is advocated to quench mass accretion within haloes larger than about 1e13 Msun that host bright quasars. These models also match the observed strength of QSO clustering at z~0.8. At larger redshifts, however, they underpredict the QSO biasing which, instead, is correctly reproduced by semi-analytic models in which the halo merger history and associated BHs are followed by Monte Carlo realizations of the merger hierarchy. We show that the disagreement between the luminosity function predicted by semi-analytic models and observations can be ascribed to the use of B-band data, which are a biased tracer of the quasar population, due to obscuration.Comment: 13 pages, 9 figures. Accepted by MNRA

    The cosmological co-evolution of supermassive black holes, AGN and galaxies

    Full text link
    We model the cosmological co-evolution of galaxies and their central supermassive black holes (BHs) within a semi-analytical framework developed on the outputs of the Millennium Simulation (Croton et al., 2006; De Lucia & Blaizot, 2007). In this work, we analyze the model BH scaling relations, fundamental plane and mass function, and compare them with the most recent observational data. Furthermore, we extend the original code developed by Croton et al. (2006) to follow the evolution of the BH mass accretion and its conversion into radiation, and compare the derived AGN bolometric luminosity function with the observed one. We find, for the most part, a very good agreement between predicted and observed BH properties. Moreover, the model is in good agreement with the observed AGN number density in 0<z<5, provided it is assumed that the cold gas fraction accreted by BHs at high redshifts is larger than at low redshifts (Marulli et al., 2008).Comment: Proceedings of "The Central Kiloparsec: Active Galactic Nuclei and Their Hosts", Ierapetra, Crete, 4-6 June, 2008. To appear in Volume 79 of the Memorie della Societa' Astronomica Italiana. 5 pages, 4 figure

    Constraints on a scale-dependent bias from galaxy clustering

    Full text link
    We forecast the future constraints on scale-dependent parametrizations of galaxy bias and their impact on the estimate of cosmological parameters from the power spectrum of galaxies measured in a spectroscopic redshift survey. For the latter we assume a wide survey at relatively large redshifts, similar to the planned Euclid survey, as baseline for future experiments. To assess the impact of the bias we perform a Fisher matrix analysis and we adopt two different parametrizations of scale-dependent bias. The fiducial models for galaxy bias are calibrated using a mock catalogs of Hα\alpha emitting galaxies mimicking the expected properties of the objects that will be targeted by the Euclid survey. In our analysis we have obtained two main results. First of all, allowing for a scale-dependent bias does not significantly increase the errors on the other cosmological parameters apart from the rms amplitude of density fluctuations, σ8\sigma_{8}, and the growth index Îł\gamma, whose uncertainties increase by a factor up to two, depending on the bias model adopted. Second, we find that the accuracy in the linear bias parameter b0b_{0} can be estimated to within 1-2\% at various redshifts regardless of the fiducial model. The non-linear bias parameters have significantly large errors that depend on the model adopted. Despite of this, in the more realistic scenarios departures from the simple linear bias prescription can be detected with a ∌2 σ\sim2\,\sigma significance at each redshift explored. Finally, we use the Fisher Matrix formalism to assess the impact of assuming an incorrect bias model and found that the systematic errors induced on the cosmological parameters are similar or even larger than the statistical ones.Comment: new section added; conclusions unchanged; accepted for publication in PR

    A numerical study of the effects of primordial non-Gaussianities on weak lensing statistics

    Full text link
    While usually cosmological initial conditions are assumed to be Gaussian, inflationary theories can predict a certain amount of primordial non-Gaussianity which can have an impact on the statistical properties of the lensing observables. In order to evaluate this effect, we build a large set of realistic maps of different lensing quantities starting from light-cones extracted from large dark-matter only N-body simulations with initial conditions corresponding to different levels of primordial local non-Gaussianity strength fNLf_{\rm NL}. Considering various statistical quantities (PDF, power spectrum, shear in aperture, skewness and bispectrum) we find that the effect produced by the presence of primordial non-Gaussianity is relatively small, being of the order of few per cent for values of ∣fNL∣|f_{\rm NL}| compatible with the present CMB constraints and reaching at most 10-15 per cent for the most extreme cases with ∣fNL∣=1000|f_{\rm NL}|=1000. We also discuss the degeneracy of this effect with the uncertainties due to the power spectrum normalization σ8\sigma_8 and matter density parameter Ωm\Omega_{\rm m}, finding that an error in the determination of σ8\sigma_8 (Ωm\Omega_{\rm m}) of about 3 (10) per cent gives differences comparable with non-Gaussian models having fNL=±1000f_{\rm NL}=\pm 1000. These results suggest that the possible presence of an amount of primordial non-Gaussianity corresponding to ∣fNL∣=100|f_{\rm NL}|=100 is not hampering a robust determination of the main cosmological parameters in present and future weak lensing surveys, while a positive detection of deviations from the Gaussian hypothesis is possible only breaking the degeneracy with other cosmological parameters and using data from deep surveys covering a large fraction of the sky.Comment: accepted by MNRA

    An Embedded Processor-based Front End Architecture for the Daq System of a Kinetic Inductance Detector

    Get PDF
    Abstract Detecting cosmic microwave background radiation anisotropies calls for extreme precision measurement of photon energy in the range of 70 to 900 GHz. Kinetic Inductance Detectors (KIDs) are able to reduce the effects of the radiative noise. In this paper we describe the Front-End electronics architecture we adopted for the Data Acquisition System of a Kinetic Inductance Detector

    Smart District Heating: Distributed Generation Systems' Effects on the Network☆

    Get PDF
    Abstract The European strategy 20-20-20 – providing for energy efficiency increase, pollutant emissions reduction and fossil fuel consumption reduction – leads to an increasing attention on the concept of smart cities. In this scenario, it is important to consider a possible integration between networks and distributed generation systems – i.e. to realize a bidirectional energy flux at the utilities, giving rise to the so-called smart grid – not only for the electrical sector, but also for the thermal energy field. Therefore, the concept of smart grid could be extended to the heat sector in relation to District Heating Networks (DHNs) and considering thermal energy distributed generation systems, such as solar thermal panels or micro-Combined Heat and Power (micro-CHP) generators. In this study several different layouts for the utilities substations in smart DHNs will be presented and discussed. These layouts have been developed in order to allow the bidirectional exchange of thermal energy at the utilities, optimizing the thermal exchange as function of network design temperatures (for both the supply and the return), of utilities' thermal power requirement and depending on the characteristics of the production system. Further, in this paper the results obtained from the simulations, carried out with the software Intelligent Heat Energy Network Analysis (I.H.E.N.A.) considering the implementation of the elaborated layouts, will be analyzed

    Storage Solutions for Renewable Production in Household Sector

    Get PDF
    Abstract The penetration of renewable sources, particularly wind and solar, into the grid has been increasing in recent years. As a consequence, there have been serious concerns over reliable and safety operation of power systems. One possible solution, to improve grid stability, is to integrate energy storage devices into power system network: storing energy produced in periods of low demand to later use, ensuring full exploitation of intermittent available sources. Focusing on stand-alone photovoltaic (PV) energy system, energy storage is needed with the purpose of ensuring continuous power flow, to minimize or, if anything, to neglect electrical grid supply. A comprehensive study on a hybrid stand-alone photovoltaic power system using two different energy storage technologies has been performed. This study examines the feasibility of replacing electricity provided by the grid with hybrid system to meet household demand. This paper is a part of an experimental and a theoretical study which is currently under development at University of Bologna. A test facility is under construction, at the University of Bologna, for the experimental characterization of the cogenerative performance of small scale hybrid power systems, composed of micro-CHP systems of different technologies : a Micro Rankine Cycles (MRC), a Proton Exchange Membrane Fuel Cells (PEM-FC), a battery, an electrolyzer and a heat recovery subsystem. The test set-up is also integrated with an external load simulator, in order to generate variable load profiles. This paper presents the theoretical results of the performance simulations developed considering an hybrid system consisting on a photovoltaic array (PV), electrochemical batteries (B) and electrolyzer (HY) with a H2 tank and a Proton Exchange Membrane Fuel Cell (PEM-FC) stack, in case of a household electrical demand. The performance of this system have been evaluated by the use of a calculation code, in-house developed by University of Bologna; future activities will be the tuning of the software with the experimental results, in order to realize a code able to define the correct size of each sub-system, ones the load profile of the utility is known or estimated

    Euclid preparation: XV. Forecasting cosmological constraints for the EuclidEuclid and CMB joint analysis

    Get PDF
    The combination and cross-correlation of the upcoming Euclid data with cosmic microwave background (CMB) measurements is a source of great expectation since it will provide the largest lever arm of epochs, ranging from recombination to structure formation across the entire past light cone. In this work, we present forecasts for the joint analysis of Euclid and CMB data on the cosmological parameters of the standard cosmological model and some of its extensions. This work expands and complements the recently published forecasts based on Euclid-specific probes, namely galaxy clustering, weak lensing, and their cross-correlation. With some assumptions on the specifications of current and future CMB experiments, the predicted constraints are obtained from both a standard Fisher formalism and a posterior-fitting approach based on actual CMB data. Compared to a Euclid-only analysis, the addition of CMB data leads to a substantial impact on constraints for all cosmological parameters of the standard Λ-cold-dark-matter model, with improvements reaching up to a factor of ten. For the parameters of extended models, which include a redshift-dependent dark energy equation of state, non-zero curvature, and a phenomenological modification of gravity, improvements can be of the order of two to three, reaching higher than ten in some cases. The results highlight the crucial importance for cosmological constraints of the combination and cross-correlation of Euclid probes with CMB data
    • 

    corecore