1,251 research outputs found

    Marine 5-thiohistidines as protective molecules from skin damage

    Get PDF
    Introduction Marine environment is a great source of bioactive molecules, whose biological properties and applications are often used especially to prevent skin diseases and aging caused by UVA­exposure. Ovothiols are methyl­5­thiohistidines from marine invertebrates, bacteria, and microalgae, which protect cells from environmental stressors. Recently, we have shown that, ovothiol, isolated from sea urchin eggs, exerts anti­inflammatory and antioxidant activities on human endothelial cells, and exhibits antifibrotic effect in an in vivo model of liver fibrosis.info:eu-repo/semantics/publishedVersio

    Natural Sulfur-Containing Compounds: An Alternative Therapeutic Strategy against Liver Fibrosis

    Get PDF
    Liver fibrosis is a pathophysiologic process involving the accumulation of extracellular matrix proteins as collagen deposition. Advanced liver fibrosis can evolve in cirrhosis, portal hypertension and often requires liver transplantation. At the cellular level, hepatic fibrosis involves the activation of hepatic stellate cells and their transdifferentiation into myofibroblasts. Numerous pro-fibrogenic mediators including the transforming growth factor-β1, the platelet-derived growth factor, endothelin-1, toll-like receptor 4, and reactive oxygen species are key players in this process. Knowledge of the cellular and molecular mechanisms underlying hepatic fibrosis development need to be extended to find novel therapeutic strategies. Antifibrotic therapies aim to inhibit the accumulation of fibrogenic cells and/or prevent the deposition of extracellular matrix proteins. Natural products from terrestrial and marine sources, including sulfur-containing compounds, exhibit promising activities for the treatment of fibrotic pathology. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans are largely unknown. This review aims to provide a reference collection on experimentally tested natural anti-fibrotic compounds, with particular attention on sulfur-containing molecules. Their chemical structure, sources, mode of action, molecular targets, and pharmacological activity in the treatment of liver disease will be discussed

    Antifibrotic effect of marine ovothiol in an in vivo model of liver fibrosis

    Get PDF
    Liver fibrosis is a complex process caused by chronic hepatic injury, which leads to an excessive increase in extracellular matrix protein accumulation and fibrogenesis. Several natural products, including sulfur-containing compounds, have been investigated for their antifibrotic effects; however, the molecular mechanisms underpinning their action are partially still obscure. In this study, we have investigated for the first time the effect of ovothiol A, π-methyl-5-thiohistidine, isolated from sea urchin eggs on an in vivo murine model of liver fibrosis. Mice were intraperitoneally injected with carbon tetrachloride (CCl 4 ) to induce liver fibrosis and treated with ovothiol A at the dose of 50 mg/kg 3 times a week for 2 months. Treatment with ovothiol A caused a significant reduction of collagen fibers as observed by histopathological changes and serum parameters compared to mice treated with control solution. This antifibrotic effect was associated to the decrease of fibrogenic markers involved in liver fibrosis progression, such as the transforming growth factor (TGF-β), the α-smooth muscle actin (α-SMA), and the tissue metalloproteinases inhibitor (TIMP-1). Finally, we provided evidence that the attenuation of liver fibrosis by ovothiol A treatment can be regulated by the expression and activity of the membrane-bound γ-glutamyl-transpeptidase (GGT), which is a key player in maintaining intracellular redox homoeostasis. Overall, these findings indicate that ovothiol A has significant antifibrotic properties and can be considered as a new marine drug or dietary supplement in potential therapeutic strategies for the treatment of liver fibrosis

    The Role of the Pleckstrin Homology Domain in Membrane Targeting and Activation of Phospholipase Cβ1

    Get PDF
    Current studies involve an investigation of the role of the pleckstrin homology (PH) domain in membrane targeting and activation of phospholipase Cbeta(1) (PLCbeta(1)). Here we report studies on the membrane localization of the isolated PH domain from the amino terminus of PLCbeta(1) (PLCbeta(1)-PH) using fluorescence microscopy of a green fluorescent protein fusion protein. Whereas PLCbeta(1)-PH does not localize to the plasma membrane in serum-starved cells, it undergoes a rapid but transient migration to the plasma membrane upon stimulation of cells with serum or lysophosphatidic acid (LPA). Regulation of the plasma membrane localization of PLCbeta(1)-PH by phosphoinositides was also investigated. PLCbeta(1)-PH was found to bind phosphatidylinositol 3-phosphate most strongly, whereas other phosphoinositides were bound with lower affinity. The plasma membrane localization of PLCbeta(1)-PH induced by serum and LPA was blocked by wortmannin pretreatment and by LY294002. In parallel, activation of PLCbeta by LPA was inhibited by wortmannin, by LY294002, or by the overexpression of PLCbeta(1)-PH. Microinjection of betagamma subunits of G proteins in serum-starved cells induced the translocation of PLCbeta(1)-PH to the plasma membrane. These results demonstrate that a cooperative mechanism involving phosphatidylinositol 3-phosphate and the Gbetagamma subunit regulates the plasma membrane localization and activation of PLCbeta(1)-PH

    Sulfur-containing histidine compounds inhibit γ-glutamyl transpeptidase activity in human cancer cells

    Get PDF
    γ-Glutamyl transpeptidase (GGT) is an enzyme located on the surface of cellular membranes and involved in GSH metabolism and maintenance of redox homeostasis. High GGT expression on tumor cells is associated with increased cell proliferation and resistance against chemotherapy. GGT inhibitors evaluated so far in clinical trials are too toxic for human use. In this study, using enzyme kinetics analyses, we demonstrate that ovothiols, 5(Nπ)-methyl thiohistidines of marine origin, act as noncompetitive inhibitors of GGT, with an apparent Ki of 21 μM, when we fixed the concentrations of the donor substrate. We found that these compounds are more potent than the known GGT inhibitor 6-diazo-5-oxo-L-norleucine and are not toxic toward human embryonic cells. In particular, cellular process-specific fluorescence-based assays revealed that ovothiols induce a mixed cell-death phenotype of apoptosis and autophagy in GGT-overexpressing cell lines, including human liver cancer and chronic B leukemic cells. The findings of our study provide the basis for further development of 5-thiohistidines as therapeutics for GGT-positive tumors and highlight that GGT inhibition is involved in autophagy

    sodium calcium exchanger as main effector of endogenous neuroprotection elicited by ischemic tolerance

    Get PDF
    Abstract The ischemic tolerance (IT) paradigm represents a fundamental cell response to certain types or injury able to render an organ more "tolerant" to a subsequent, stronger, insult. During the 16th century, the toxicologist Paracelsus described for the first time the possibility that a noxious event might determine a state of tolerance. This finding was summarized in one of his most important mentions: "The dose makes the poison". In more recent years, ischemic tolerance in the brain was first described in 1991, when it was demonstrated by Kirino and collaborators that two minutes of subthreshold brain ischemia in gerbils produced tolerance against global brain ischemia. Based on the time in which the conditioning stimulus is applied, it is possible to define preconditioning, perconditioning and postconditioning, when the subthreshold insult is applied before, during or after the ischemic event, respectively. Furthermore, depending on the temporal delay from the ischemic event, two different modalities are distinguished: rapid or delayed preconditioning and postconditioning. Finally, the circumstance in which the conditioning stimulus is applied on an organ distant from the brain is referred as remote conditioning. Over the years the "conditioning" paradigm has been applied to several brain disorders and a number of molecular mechanisms taking part to these protective processes have been described. The mechanisms are usually classified in three distinct categories identified as triggers, mediators and effectors. As concerns the putative effectors, it has been hypothesized that brain cells appear to have the ability to adapt to hypoxia by reducing their energy demand through modulation of ion channels and transporters, which delays anoxic depolarization. The purpose of the present review is to summarize the role played by plasmamembrane proteins able to control ionic homeostasis in mediating protection elicited by brain conditioning, particular attention will be deserved to the role played by Na+/Ca2+ exchanger

    Praja1 E3 ubiquitin ligase promotes skeletal myogenesis through degradation of EZH2 upon p38α activation

    Get PDF
    Polycomb proteins are critical chromatin modifiers that regulate stem cell differentiation via transcriptional repression. In skeletal muscle progenitors Enhancer of zeste homologue 2 (EZH2), the catalytic subunit of Polycomb Repressive Complex 2 (PRC2), contributes to maintain the chromatin of muscle genes in a repressive conformation, whereas its down-regulation allows the progression through the myogenic programme. Here, we show that p38α kinase promotes EZH2 degradation in differentiating muscle cells through phosphorylation of threonine 372. Biochemical and genetic evidence demonstrates that the MYOD-induced E3 ubiquitin ligase Praja1 (PJA1) is involved in regulating EZH2 levels upon p38α activation. EZH2 premature degradation in proliferating myoblasts is prevented by low levels of PJA1, its cytoplasmic localization and the lower activity towards unphosphorylated EZH2. Our results indicate that signal-dependent degradation of EZH2 is a prerequisite for satellite cells differentiation and identify PJA1 as a new player in the epigenetic control of muscle gene expression
    corecore