1,398 research outputs found

    Dilution effects in Ho2−x_{2-x}Yx_xSn2_2O7_7: from the Spin Ice to the single-ion magnet

    Full text link
    A study of the modifications of the magnetic properties of Ho2−x_{2-x}Yx_xSn2_2O7_7 upon varying the concentration of diamagnetic Y3+^{3+} ions is presented. Magnetization and specific heat measurements show that the Spin Ice ground-state is only weakly affected by doping for x≤0.3x\leq 0.3, even if non-negligible changes in the crystal field at Ho3+^{3+} occur. In this low doping range μ\muSR relaxation measurements evidence a modification in the low-temperature dynamics with respect to the one observed in the pure Spin Ice. For x→2x\to 2, or at high temperature, the dynamics involve fluctuations among Ho3+^{3+} crystal field levels which give rise to a characteristic peak in 119^{119}Sn nuclear spin-lattice relaxation rate. In this doping limit also the changes in Ho3+^{3+} magnetic moment suggest a variation of the crystal field parameters.Comment: 4 pages, 5 figures, proceedings of HFM2008 Conferenc

    Dynamic susceptibility and dynamic correlations in spin ice

    Full text link
    Here we calculate the dynamic susceptibility and dynamic correlation function in spin ice using the model of emergent magnetic monopoles. Calculations are based on a method originally suggested for the description of dynamic processes in water ice (non-equilibrium thermodynamics approach). We show that for zero temperature the dynamic correlation function reproduces the transverse dipole correlations (static correlation function) characteristic of spin ice in its ground state. At non-zero temperatures the dynamic correlation function includes an additional longitudinal component which decreases as the temperature decreases. Both terms (transverse and longitudinal) exhibit identical Debye-like dependences on frequency but with different relaxation times: the magnetic Coulomb interaction of monopoles reduces the longitudinal relaxation time with respect to the transverse one. We calculate the dielectric function for the magnetic monopole gas and discuss how the non-equilibrium thermodynamics approach exposes corrections to the Debye-Huckel theory of magnetic monopoles and the concept of "entropic charge".Comment: 5 pages, 2 figure

    Universal Magnetic Fluctuations with a Field Induced Length Scale

    Full text link
    We calculate the probability density function for the order parameter fluctuations in the low temperature phase of the 2D-XY model of magnetism near the line of critical points. A finite correlation length, \xi, is introduced with a small magnetic field, h, and an accurate expression for \xi(h) is developed by treating non-linear contributions to the field energy using a Hartree approximation. We find analytically a series of universal non-Gaussian distributions with a finite size scaling form and present a Gumbel-like function that gives the PDF to an excellent approximation. We propose the Gumbel exponent, a(h), as an indirect measure of the length scale of correlations in a wide range of complex systems.Comment: 7 pages, 4 figures, 1 table. To appear in Phys. Rev.

    Comment on "Universal Fluctuations in Correlated Systems"

    Full text link
    This is a Comment on "Universal Fluctuations in Correlated Systems".Comment: to appear in Phys. Rev. Let

    Non-Gaussian Resistance Noise near Electrical Breakdown in Granular Materials

    Full text link
    The distribution of resistance fluctuations of conducting thin films with granular structure near electrical breakdown is studied by numerical simulations. The film is modeled as a resistor network in a steady state determined by the competition between two biased processes, breaking and recovery. Systems of different sizes and with different levels of internal disorder are considered. Sharp deviations from a Gaussian distribution are found near breakdown and the effect increases with the degree of internal disorder. However, we show that in general this non-Gaussianity is related to the finite size of the system and vanishes in the large size limit. Nevertheless, near the critical point of the conductor-insulator transition, deviations from Gaussianity persist when the size is increased and the distribution of resistance fluctuations is well fitted by the universal Bramwell-Holdsworth-Pinton distribution.Comment: 8 pages, 6 figures; accepted for publication on Physica

    Characterising anomalous transport in accretion disks from X-ray observations

    Get PDF
    Whilst direct observations of internal transport in accretion disks are not yet possible, measurement of the energy emitted from accreting astrophysical systems can provide useful information on the physical mechanisms at work. Here we examine the unbroken multi-year time variation of the total X-ray flux from three sources: Cygnus X-1 , the microquasar GRS 1915+105 , and for comparison the nonaccreting Crab nebula. To complement previous analyses, we demonstrate that the application of advanced statistical methods to these observational time-series reveals important contrasts in the nature and scaling properties of the transport processes operating within these sources. We find the Crab signal resembles Gaussian noise; the Cygnus X-1 signal is a leptokurtic random walk whose self-similar properties persist on timescales up to three years; and the GRS 1915+105 signal is similar to that from Cygnus X-1, but with self-similarity extending possibly to only a few days. This evidence of self-similarity provides a robust quantitative characterisation of anomalous transport occuring within the systems

    Metal-insulator transition caused by the coupling to localized charge-frustrated systems under ice-rule local constraint

    Full text link
    We report the results of our theoretical and numerical study on electronic and transport properties of fermion systems with charge frustration. We consider an extended Falicov-Kimball model in which itinerant spinless fermions interact repulsively by U with localized particles whose distribution satisfies a local constraint under geometrical frustration, the so-called ice rule. We numerically calculate the density of states, optical conductivity, and inverse participation ratio for the models on the pyrochlore, checkerboard, and kagome lattices, and discuss the nature of metal-insulator transitions at commensurate fillings. As a result, we show that the ice-rule local constraint leads to several universal features in the electronic structure; a charge gap opens at a considerably small U compared to the bandwidth, and the energy spectrum approaches a characteristic form in the large U limit, that is, the noninteracting tight-binding form in one dimension or the δ\delta-functional peak. In the large U region, the itinerant fermions are confined in the macroscopically-degenerate ice-rule configurations, which consist of a bunch of one-dimensional loops: We call this insulating state the charge ice. On the other hand, transport properties are much affected by the geometry and dimensionality of lattices; e.g., the pyrochlore lattice model exhibits a transition from a metallic to the charge-ice insulating state by increasing U, while the checkerboard lattice model appears to show Anderson localization before opening a gap. Meanwhile, in the kagome lattice case, we do not obtain clear evidence of Anderson localization. Our results elucidate the universality and diversity of phase transitions to the charge-ice insulator in fully frustrated lattices.Comment: 16 pages, 17 figure

    Statistics of extremal intensities for Gaussian interfaces

    Full text link
    The extremal Fourier intensities are studied for stationary Edwards-Wilkinson-type, Gaussian, interfaces with power-law dispersion. We calculate the probability distribution of the maximal intensity and find that, generically, it does not coincide with the distribution of the integrated power spectrum (i.e. roughness of the surface), nor does it obey any of the known extreme statistics limit distributions. The Fisher-Tippett-Gumbel limit distribution is, however, recovered in three cases: (i) in the non-dispersive (white noise) limit, (ii) for high dimensions, and (iii) when only short-wavelength modes are kept. In the last two cases the limit distribution emerges in novel scenarios.Comment: 15 pages, including 7 ps figure
    • …
    corecore