1,398 research outputs found
Dilution effects in HoYSnO: from the Spin Ice to the single-ion magnet
A study of the modifications of the magnetic properties of
HoYSnO upon varying the concentration of diamagnetic
Y ions is presented. Magnetization and specific heat measurements show
that the Spin Ice ground-state is only weakly affected by doping for , even if non-negligible changes in the crystal field at Ho occur.
In this low doping range SR relaxation measurements evidence a
modification in the low-temperature dynamics with respect to the one observed
in the pure Spin Ice. For , or at high temperature, the dynamics
involve fluctuations among Ho crystal field levels which give rise to a
characteristic peak in Sn nuclear spin-lattice relaxation rate. In this
doping limit also the changes in Ho magnetic moment suggest a variation
of the crystal field parameters.Comment: 4 pages, 5 figures, proceedings of HFM2008 Conferenc
Dynamic susceptibility and dynamic correlations in spin ice
Here we calculate the dynamic susceptibility and dynamic correlation function
in spin ice using the model of emergent magnetic monopoles. Calculations are
based on a method originally suggested for the description of dynamic processes
in water ice (non-equilibrium thermodynamics approach). We show that for zero
temperature the dynamic correlation function reproduces the transverse dipole
correlations (static correlation function) characteristic of spin ice in its
ground state. At non-zero temperatures the dynamic correlation function
includes an additional longitudinal component which decreases as the
temperature decreases. Both terms (transverse and longitudinal) exhibit
identical Debye-like dependences on frequency but with different relaxation
times: the magnetic Coulomb interaction of monopoles reduces the longitudinal
relaxation time with respect to the transverse one. We calculate the dielectric
function for the magnetic monopole gas and discuss how the non-equilibrium
thermodynamics approach exposes corrections to the Debye-Huckel theory of
magnetic monopoles and the concept of "entropic charge".Comment: 5 pages, 2 figure
Universal Magnetic Fluctuations with a Field Induced Length Scale
We calculate the probability density function for the order parameter
fluctuations in the low temperature phase of the 2D-XY model of magnetism near
the line of critical points. A finite correlation length, \xi, is introduced
with a small magnetic field, h, and an accurate expression for \xi(h) is
developed by treating non-linear contributions to the field energy using a
Hartree approximation. We find analytically a series of universal non-Gaussian
distributions with a finite size scaling form and present a Gumbel-like
function that gives the PDF to an excellent approximation. We propose the
Gumbel exponent, a(h), as an indirect measure of the length scale of
correlations in a wide range of complex systems.Comment: 7 pages, 4 figures, 1 table. To appear in Phys. Rev.
Comment on "Universal Fluctuations in Correlated Systems"
This is a Comment on "Universal Fluctuations in Correlated Systems".Comment: to appear in Phys. Rev. Let
Non-Gaussian Resistance Noise near Electrical Breakdown in Granular Materials
The distribution of resistance fluctuations of conducting thin films with
granular structure near electrical breakdown is studied by numerical
simulations. The film is modeled as a resistor network in a steady state
determined by the competition between two biased processes, breaking and
recovery. Systems of different sizes and with different levels of internal
disorder are considered. Sharp deviations from a Gaussian distribution are
found near breakdown and the effect increases with the degree of internal
disorder. However, we show that in general this non-Gaussianity is related to
the finite size of the system and vanishes in the large size limit.
Nevertheless, near the critical point of the conductor-insulator transition,
deviations from Gaussianity persist when the size is increased and the
distribution of resistance fluctuations is well fitted by the universal
Bramwell-Holdsworth-Pinton distribution.Comment: 8 pages, 6 figures; accepted for publication on Physica
Characterising anomalous transport in accretion disks from X-ray observations
Whilst direct observations of internal transport in accretion disks are not yet possible, measurement of the energy emitted from accreting astrophysical systems can provide useful information on the physical mechanisms at work. Here we examine the unbroken multi-year time variation of the total X-ray flux from three sources: Cygnus X-1 , the microquasar GRS 1915+105 , and for comparison the nonaccreting Crab nebula. To complement previous analyses, we demonstrate that the application of advanced statistical methods to these observational time-series reveals important contrasts in the nature and scaling properties of the transport processes operating within these sources. We find the Crab signal resembles Gaussian noise; the Cygnus X-1 signal is a leptokurtic random walk whose self-similar properties persist on timescales up to three years; and the GRS 1915+105 signal is similar to that from Cygnus X-1, but with self-similarity extending possibly to only a few days. This evidence of self-similarity provides a robust quantitative characterisation of anomalous transport occuring within the systems
Metal-insulator transition caused by the coupling to localized charge-frustrated systems under ice-rule local constraint
We report the results of our theoretical and numerical study on electronic
and transport properties of fermion systems with charge frustration. We
consider an extended Falicov-Kimball model in which itinerant spinless fermions
interact repulsively by U with localized particles whose distribution satisfies
a local constraint under geometrical frustration, the so-called ice rule. We
numerically calculate the density of states, optical conductivity, and inverse
participation ratio for the models on the pyrochlore, checkerboard, and kagome
lattices, and discuss the nature of metal-insulator transitions at commensurate
fillings. As a result, we show that the ice-rule local constraint leads to
several universal features in the electronic structure; a charge gap opens at a
considerably small U compared to the bandwidth, and the energy spectrum
approaches a characteristic form in the large U limit, that is, the
noninteracting tight-binding form in one dimension or the -functional
peak. In the large U region, the itinerant fermions are confined in the
macroscopically-degenerate ice-rule configurations, which consist of a bunch of
one-dimensional loops: We call this insulating state the charge ice. On the
other hand, transport properties are much affected by the geometry and
dimensionality of lattices; e.g., the pyrochlore lattice model exhibits a
transition from a metallic to the charge-ice insulating state by increasing U,
while the checkerboard lattice model appears to show Anderson localization
before opening a gap. Meanwhile, in the kagome lattice case, we do not obtain
clear evidence of Anderson localization. Our results elucidate the universality
and diversity of phase transitions to the charge-ice insulator in fully
frustrated lattices.Comment: 16 pages, 17 figure
Statistics of extremal intensities for Gaussian interfaces
The extremal Fourier intensities are studied for stationary
Edwards-Wilkinson-type, Gaussian, interfaces with power-law dispersion. We
calculate the probability distribution of the maximal intensity and find that,
generically, it does not coincide with the distribution of the integrated power
spectrum (i.e. roughness of the surface), nor does it obey any of the known
extreme statistics limit distributions. The Fisher-Tippett-Gumbel limit
distribution is, however, recovered in three cases: (i) in the non-dispersive
(white noise) limit, (ii) for high dimensions, and (iii) when only
short-wavelength modes are kept. In the last two cases the limit distribution
emerges in novel scenarios.Comment: 15 pages, including 7 ps figure
- …