1,595 research outputs found

    Long-term Disease-free Survival Following Combination Multi-visceral and Metastatic Resection with Neoadjuvant FOLFIRINOX for Pancreatic Adenocarcinoma: A Case Report.

    No full text
    We describe a case of metastatic pancreatic adenocarcinoma treated with neoadjuvant FOLFIRINOX chemotherapy and combined pancreatic multi-visceral and metastatic liver resection in a patient currently disease-free four years after diagnosis

    Probing dark matter substructure in the gravitational lens HE0435-1223 with the WFC3 grism

    Full text link
    Strong gravitational lensing provides a powerful test of Cold Dark Matter (CDM) as it enables the detection and mass measurement of low mass haloes even if they do not contain baryons. Compact lensed sources such as Active Galactic Nuclei (AGN) are particularly sensitive to perturbing subhalos, but their use as a test of CDM has been limited by the small number of systems which have significant radio emission which is extended enough avoid significant lensing by stars in the plane of the lens galaxy, and red enough to be minimally affected by differential dust extinction. Narrow-line emission is a promising alternative as it is also extended and, unlike radio, detectable in virtually all optically selected AGN lenses. We present first results from a WFC3 grism narrow-line survey of lensed quasars, for the quadruply lensed AGN HE0435-1223. Using a forward modelling pipeline which enables us to robustly account for spatial blending, we measure the [OIII] 5007 \AA~ flux ratios of the four images. We find that the [OIII] fluxes and positions are well fit by a simple smooth mass model for the main lens. Our data rule out a M600>108(107.2)MM_{600}>10^{8} (10^{7.2}) M_\odot NFW perturber projected within \sim1\farcs0 (0\farcs1) arcseconds of each of the lensed images, where M600M_{600} is the perturber mass within its central 600 pc. The non-detection is broadly consistent with the expectations of Λ\LambdaCDM for a single system. The sensitivity achieved demonstrates that powerful limits on the nature of dark matter can be obtained with the analysis of 20\sim20 narrow-line lenses.Comment: Accepted for publication in MNRAS, 15 pages, 8 figure

    Neural responses to facial and vocal expressions of fear and disgust

    Get PDF
    Neuropsychological studies report more impaired responses to facial expressions of fear than disgust in people with amygdala lesions, and vice versa in people with Huntington's disease. Experiments using functional magnetic resonance imaging (fMRI) have confirmed the role of the amygdala in the response to fearful faces and have implicated the anterior insula in the response to facial expressions of disgust. We used fMRI to extend these studies to the perception of fear and disgust from both facial and vocal expressions. Consistent with neuropsychological findings, both types of fearful stimuli activated the amygdala. Facial expressions of disgust activated the anterior insula and the caudate-putamen; vocal expressions of disgust did not significantly activate either of these regions. All four types of stimuli activated the superior temporal gyrus. Our findings therefore (i) support the differential localization of the neural substrates of fear and disgust; (ii) confirm the involvement of the amygdala in the emotion of fear, whether evoked by facial or vocal expressions; (iii) confirm the involvement of the anterior insula and the striatum in reactions to facial expressions of disgust; and (iv) suggest a possible general role for the perception of emotional expressions for the superior temporal gyrus

    Neural correlates of visuospatial working memory in the ‘at-risk mental state’

    Get PDF
    Background. Impaired spatial working memory (SWM) is a robust feature of schizophrenia and has been linked to the risk of developing psychosis in people with an at-risk mental state (ARMS). We used functional magnetic resonance imaging (fMRI) to examine the neural substrate of SWM in the ARMS and in patients who had just developed schizophrenia. Method. fMRI was used to study 17 patients with an ARMS, 10 patients with a first episode of psychosis and 15 agematched healthy comparison subjects. The blood oxygen level-dependent (BOLD) response was measured while subjects performed an object–location paired-associate memory task, with experimental manipulation of mnemonic load. Results. In all groups, increasing mnemonic load was associated with activation in the medial frontal and medial posterior parietal cortex. Significant between-group differences in activation were evident in a cluster spanning the medial frontal cortex and right precuneus, with the ARMS groups showing less activation than controls but greater activation than first-episode psychosis (FEP) patients. These group differences were more evident at the most demanding levels of the task than at the easy level. In all groups, task performance improved with repetition of the conditions. However, there was a significant group difference in the response of the right precuneus across repeated trials, with an attenuation of activation in controls but increased activation in FEP and little change in the ARMS. Conclusions. Abnormal neural activity in the medial frontal cortex and posterior parietal cortex during an SWM task may be a neural correlate of increased vulnerability to psychosis

    Bright galaxies at Hubble's redshift detection frontier: Preliminary results and design from the redshift z~9-10 BoRG pure-parallel HST survey

    Get PDF
    We present the first results and design from the redshift z~9-10 Brightest of the Reionizing Galaxies {\it Hubble Space Telescope} survey BoRG[z9-10], aimed at searching for intrinsically luminous unlensed galaxies during the first 700 Myr after the Big Bang. BoRG[z9-10] is the continuation of a multi-year pure-parallel near-IR and optical imaging campaign with the Wide Field Camera 3. The ongoing survey uses five filters, optimized for detecting the most distant objects and offering continuous wavelength coverage from {\lambda}=0.35{\mu}m to {\lambda}=1.7{\mu}m. We analyze the initial ~130 arcmin2^2 of area over 28 independent lines of sight (~25% of the total planned) to search for z>7 galaxies using a combination of Lyman break and photometric redshift selections. From an effective comoving volume of (5-25) times105times 10^5 Mpc3^3 for magnitudes brighter than mAB=26.524.0m_{AB}=26.5-24.0 in the H160H_{160}-band respectively, we find five galaxy candidates at z~8.3-10 detected at high confidence (S/N>8), including a source at z~8.4 with mAB=24.5 (S/N~22), which, if confirmed, would be the brightest galaxy identified at such early times (z>8). In addition, BoRG[z9-10] data yield four galaxies with 7.3z87.3 \lesssim z \lesssim 8. These new Lyman break galaxies with m26.5\lesssim26.5 are ideal targets for follow-up observations from ground and space based observatories to help investigate the complex interplay between dark matter growth, galaxy assembly, and reionization.Comment: Accepted for publication on ApJ. 21 pages, 11 figures, 4 table

    The KMOS^3D Survey: design, first results, and the evolution of galaxy kinematics from 0.7<z<2.7

    Get PDF
    We present the KMOS^3D survey, a new integral field survey of over 600 galaxies at 0.7<z<2.7 using KMOS at the Very Large Telescope (VLT). The KMOS^3D survey utilizes synergies with multi-wavelength ground and space-based surveys to trace the evolution of spatially-resolved kinematics and star formation from a homogeneous sample over 5 Gyrs of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass (MM_*) and rest-frame (UV)M(U-V)-M_* planes uniformly. We describe the selection of targets, the observations, and the data reduction. In the first year of data we detect Halpha emission in 191 M=3×1097×1011M_*=3\times10^{9}-7\times10^{11} Msun galaxies at z=0.7-1.1 and z=1.9-2.7. In the current sample 83% of the resolved galaxies are rotation-dominated, determined from a continuous velocity gradient and vrot/σ>1v_{rot}/\sigma>1, implying that the star-forming 'main sequence' (MS) is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Halpha kinematic maps indicate at least ~70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous IFS studies at z>0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km/s at z~2.3 to 25 km/s at z~0.9 while the rotational velocities at the two redshifts are comparable. Combined with existing results spanning z~0-3, disk velocity dispersions follow an approximate (1+z) evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally-stable disk theory.Comment: 20 pages, 11 figures, 1 Appendix; Accepted to ApJ November 2
    corecore