2,141 research outputs found

    Electromagnetic radiation screening of microcircuits for long life applications

    Get PDF
    The utility of X-rays as a stimulus for screening high reliability semiconductor microcircuits was studied. The theory of the interaction of X-rays with semiconductor materials and devices was considered. Experimental measurements of photovoltages, photocurrents, and effects on specified parameters were made on discrete devices and on microcircuits. The test specimens included discrete devices with certain types of identified flaws and symptoms of flaws, and microcircuits exhibiting deviant electrical behavior. With a necessarily limited sample of test specimens, no useful correlation could be found between the X-ray-induced electrical response and the known or suspected presence of flaws

    Thirty-fold: Extreme gravitational lensing of a quiescent galaxy at z=1.6z=1.6

    Full text link
    We report the discovery of eMACSJ1341-QG-1, a quiescent galaxy at z=1.594z=1.594 located behind the massive galaxy cluster eMACSJ1341.9-2442 (z=0.835z=0.835). The system was identified as a gravitationally lensed triple image in Hubble Space Telescope images obtained as part of a snapshot survey of the most X-ray luminous galaxy clusters at z>0.5z>0.5 and spectroscopically confirmed in ground-based follow-up observations with the ESO/X-Shooter spectrograph. From the constraints provided by the triple image, we derive a first, crude model of the mass distribution of the cluster lens, which predicts a gravitational amplification of a factor of \sim30 for the primary image and a factor of \sim6 for the remaining two images of the source, making eMACSJ1341-QG-1 by far the most strongly amplified quiescent galaxy discovered to date. Our discovery underlines the power of SNAPshot observations of massive, X-ray selected galaxy clusters for lensing-assisted studies of faint background populations

    Evidence for non-stellar rest-frame near-IR emission associated with increased star formation in galaxies at z1z \sim 1

    Get PDF
    We explore the presence of non-stellar rest-frame near-IR (25 μm2-5 \ \mu \mathrm{m}) emission in galaxies at z1z \sim 1. Previous studies identified this excess in relatively small samples and suggested that such non-stellar emission, which could be linked to the 3.3 μm3.3 \ \mu \mathrm{m} polycyclic aromatic hydrocarbons feature or hot dust emission, is associated with an increased star formation rate (SFR). In this Letter, we confirm and quantify the presence of an IR excess in a significant fraction of galaxies in the 3D-HST GOODS catalogs. By constructing a matched sample of galaxies with and without strong non-stellar near-IR emission, we find that galaxies with such emission are predominantly star-forming galaxies. Moreover, star-forming galaxies with an excess show increased mid- and far-IR and Hα\alpha emission compared to other star-forming galaxies without. While galaxies with a near-IR excess show a larger fraction of individually detected X-ray active galactic nuclei (AGNs), an X-ray stacking analysis, together with the IR-colors and Hα\alpha profiles, shows that AGNs are unlikely to be the dominant source of the excess in the majority of galaxies. Our results suggest that non-stellar near-IR emission is linked to increased SFRs and is ubiquitous among star-forming galaxies. As such, the near-IR emission might be a powerful tool to measure SFRs in the era of the James Webb Space Telescope.Comment: 6 pages, 5 figures, accepted for publication in ApJ

    FIREWORKS U38-to-24 micron photometry of the GOODS-CDFS: multi-wavelength catalog and total IR properties of distant Ks-selected galaxies

    Full text link
    We present a Ks-selected catalog, dubbed FIREWORKS, for the Chandra Deep Field South (CDFS) containing photometry in U_38, B_435, B, V, V_606, R, i_775, I, z_850, J, H, Ks, [3.6 um], [4.5 um], [5.8 um], [8.0 um], and the MIPS [24 um] band. The imaging has a typical Ks limit of 24.3 mag (5 sigma, AB) and coverage over 113 arcmin^2 in all bands and 138 arcmin^2 in all bands but H. We cross-correlate our catalog with the 1 Ms X-ray catalog by Giacconi et al. (2002) and with all available spectroscopic redshifts to date. We find and explain systematic differences in a comparison with the 'z_850 + Ks'-selected GOODS-MUSIC catalog that covers ~90% of the field. We exploit the U38-to-24 micron photometry to determine which Ks-selected galaxies at 1.5<z<2.5 have the brightest total IR luminosities and which galaxies contribute most to the integrated total IR emission. The answer to both questions is that red galaxies are dominating in the IR. This is true no matter whether color is defined in the rest-frame UV, optical, or optical-to-NIR. We do find however that among the reddest galaxies in the rest-frame optical, there is a population of sources with only little mid-IR emission, suggesting a quiescent nature.Comment: Accepted for publication in the Astrophysical Journal, 20 pages, 10 figures, reference to website correcte

    X-ray properties of K-selected galaxies at 0.5<z<2.0: Investigating trends with stellar mass, redshift and spectral type

    Full text link
    We examine how the total X-ray luminosity correlates with stellar mass, stellar population, and redshift for a K-band limited sample of ~3500 galaxies at 0.5<z<2.0 from the NEWFIRM Medium Band Survey in the COSMOS field. The galaxy sample is divided into 32 different galaxy types, based on similarities between the spectral energy distributions. For each galaxy type, we further divide the sample into bins of redshift and stellar mass, and perform an X-ray stacking analysis using the Chandra COSMOS (C-COSMOS) data. We find that full band X-ray luminosity is primarily increasing with stellar mass, and at similar mass and spectral type is higher at larger redshifts. When comparing at the same stellar mass, we find that the X-ray luminosity is slightly higher for younger galaxies (i.e., weaker 4000\AA breaks), but the scatter in this relation is large. We compare the observed X-ray luminosities to those expected from low and high mass X-ray binaries (XRBs). For blue galaxies, XRBs can almost fully account for the observed emission, while for older galaxies with larger 4000\AA breaks, active galactic nuclei (AGN) or hot gas dominate the measured X-ray flux. After correcting for XRBs, the X-ray luminosity is still slightly higher in younger galaxies, although this correlation is not significant. AGN appear to be a larger component of galaxy X-ray luminosity at earlier times, as the hardness ratio increases with redshift. Together with the slight increase in X-ray luminosity this may indicate more obscured AGNs or higher accretion rates at earlier times.Comment: 9 pages, 9 figures, ApJ accepte

    The Evolution of the Fractions of Quiescent and Star-forming Galaxies as a Function of Stellar Mass Since z=3: Increasing Importance of Massive, Dusty Star-forming Galaxies in the Early Universe

    Get PDF
    Using the UltraVISTA DR1 and 3D-HST catalogs, we construct a stellar-mass-complete sample, unique for its combination of surveyed volume and depth, to study the evolution of the fractions of quiescent galaxies, moderately unobscured star-forming galaxies, and dusty star-forming galaxies as a function of stellar mass over the redshift interval 0.2z3.00.2 \le z \le 3.0. We show that the role of dusty star-forming galaxies within the overall galaxy population becomes more important with increasing stellar mass, and grows rapidly with increasing redshift. Specifically, dusty star-forming galaxies dominate the galaxy population with log(Mstar/M)10.3\log{(M_{\rm star}/M_{\odot})} \gtrsim 10.3 at z2z\gtrsim2. The ratio of dusty and non-dusty star-forming galaxies as a function of stellar mass changes little with redshift. Dusty star-forming galaxies dominate the star-forming population at log(Mstar/M)10.010.5\log{(M_{\rm star}/M_{\odot})} \gtrsim 10.0-10.5, being a factor of \sim3-5 more common, while unobscured star-forming galaxies dominate at log(Mstar/M)10\log{(M_{\rm star}/M_{\odot})} \lesssim 10. At log(Mstar/M)>10.5\log{(M_{\rm star}/M_{\odot})} > 10.5, red galaxies dominate the galaxy population at all redshift z<3z<3, either because they are quiescent (at late times) or dusty star-forming (in the early universe).Comment: 7 pages, 4 figures, 1 table. Accepted by Astrophysical Journal Letters after minor revisio

    Stellar mass functions of galaxies at 4<z<7 from an IRAC-selected sample in COSMOS/UltraVISTA: limits on the abundance of very massive galaxies

    Get PDF
    We build a Spitzer IRAC complete catalog of objects, obtained by complementing the KsK_\mathrm{s}-band selected UltraVISTA catalog with objects detected in IRAC only. With the aim of identifying massive (i.e., log(M/M)>11\log(M_*/M_\odot)>11) galaxies at 4<z<74<z<7, we consider the systematic effects on the measured photometric redshifts from the introduction of an old and dusty SED template and from the introduction of a bayesian prior taking into account the brightness of the objects, as well as the systematic effects from different star formation histories (SFHs) and from nebular emission lines in the recovery of stellar population parameters. We show that our results are most affected by the bayesian luminosity prior, while nebular emission lines and SFHs only introduce a small dispersion in the measurements. Specifically, the number of 4<z<74<z<7 galaxies ranges from 52 to 382 depending on the adopted configuration. Using these results we investigate, for the first time, the evolution of the massive end of the stellar mass functions (SMFs) at 4<z<74<z<7. Given the rarity of very massive galaxies in the early universe, major contributions to the total error budget come from cosmic variance and poisson noise. The SMF obtained without the introduction of the bayesian luminosity prior does not show any evolution from z6.5z\sim6.5 to z3.5z\sim 3.5, implying that massive galaxies could already be present when the Universe was 0.9\sim0.9~Gyr old. However, the introduction of the bayesian luminosity prior reduces the number of z>4z>4 galaxies with best fit masses log(M/M)>11\log(M_*/M_\odot)>11 by 83%, implying a rapid growth of very massive galaxies in the first 1.5 Gyr of cosmic history. From the stellar-mass complete sample, we identify one candidate of a very massive (log(M/M)11.5\log(M_*/M_\odot)\sim11.5), quiescent galaxy at z5.4z\sim5.4, with MIPS 24μ24\mum detection suggesting the presence of a powerful obscured AGN.Comment: 23 pages, 18 figures. ApJ accepte
    corecore