101 research outputs found

    Aspirin and its Metabolites Enhance the Expression of Vascular Endothelial Growth Factor in Retinal Pigment Epithelial Cell Cultures – Implications in the Pathophysiology of Age-Related Macular Degeneration

    Get PDF
    Purpose: An estimated 19.3% of adults, especially the elderly in the United States regularly use Aspirin for cardioprotection. Recently, multiple cohort studies have concluded that regular aspirin use for 10-15 years was associated with a statistically significant increase in the risk of incident age-related and neovascular acute macular degeneration. It has been hypothesized that aspirin or its metabolites induce the expression of vascular endothelial growth factor (VEGF). Materials & Methods: Retinal pigment epithelial cells, ARPE-19 (ATCC®CRL-2302™) were cultured. The cells were grown to achieve 95% confluence and then the media was changed. Cells cultured under blue light, red light, or darkness were subjected to a challenge with high dose aspirin (0.925 mg/dL), low dose aspirin (0.325 mg/dL), or hippuric acid (0.325 mg/dL). Light was generated using 2 red or blue LEDs powered by 3v CR2032 batteries. The 24-well plate was incubated with or without drugs in blue light, red light or darkness at 37C for 16 hours. The supernatants were harvested, and VEGF was quantified. One-way ANOVA using Dunnett’s multiple comparison test was performed to analyze statistical significance. Results: Cells exposed to blue light or darkness and hippuric acid showed a statistically significant increase in VEGF secretion (P=0.0012). However, cells exposed to red light with hippuric acid challenge showed no significant difference from the mean of cells exposed to darkness and sham control. Conclusions: Retinal pigment epithelial cells challenged with oxidative stress provided by blue light or darkness in the presence of hippuric acid increased VEGF secretion, suggesting a possible cause for neovascularization in age-related macular degeneration. RPE cells exposed to red light, known to abrogate oxidative stress, had decreased levels of VEGF induction by hippuric acid

    Metabolic activity in dormant conidia ofAspergillus nigerand developmental changes during conidial outgrowth

    Get PDF
    The early stages of development of Aspergillus niger conidia during outgrowth were explored by combining genome-wide gene expression analysis (RNAseq), proteomics, Warburg manometry and uptake studies. Resting conidia suspended in water were demonstrated for the first time to be metabolically active as low levels of oxygen uptake and the generation of carbon dioxide were detected, suggesting that low-level respiratory metabolism occurs in conidia for maintenance. Upon triggering of spore germination, generation of CO2 increased dramatically. For a short period, which coincided with mobilisation of the intracellular polyol, trehalose, there was no increase in uptake of O2 indicating that trehalose was metabolised by fermentation. Data from genome-wide mRNA profiling showed the presence of transcripts associated with fermentative and respiratory metabolism in resting conidia. Following triggering of conidial outgrowth, there was a clear switch to respiration after 25 min, confirmed by cyanide inhibition. No effect of SHAM, salicylhydroxamic acid, on respiration suggests electron flow via cytochrome c oxidase. Glucose entry into spores was not detectable before 1 h after triggering germination. The impact of sorbic acid on germination was examined and we showed that it inhibits glucose uptake. O2 uptake was also inhibited, delaying the onset of respiration and extending the period of fermentation. In conclusion, we show that conidia suspended in water are not completely dormant and that conidial outgrowth involves fermentative metabolism that precedes respiration

    Protein Synthesis During Fungal Spore Germination II. Aminoacyl-soluble Ribonucleic Acid Synthetase Activities During Germination of \u3ci\u3eBotryodiplodia theobromae\u3c/i\u3e Spores

    Get PDF
    The specific activities of 13 aminoacyl-soluble ribonucleic acid (sRNA) synthetases were measured at various time intervals during the germination of Botryodiplodia theobromae conidiospores. The enzyme activities were low or absent in ungerminated spores, and they increased rapidly as germination proceeded. When extracts of the ungerminated spores were prepared with mortar and pestle, very little or no enzyme activity was detected. When the extracts were prepared with a mechanical homogenizer, however, they exhibited some enzyme activity, although less than did the extracts from germinated spores. Enzyme activities from germinated spores were approximately the same, regardless of the method of preparation. The enzyme fraction from ungerminated spores prepared with a mechanical homogenizer could also stimulate incorporation of phenylalanine into polyphenylalanine in the presence of ribosomes, polyuridylic acid, and sRNA, although the activity was approximately only 15 to 20% that of a similar enzyme fraction from germinated spores. It is concluded that ungerminated spores of B, theobromae contain active aminoacyl-sRNA synthetases and transfer enzymes, although the activities are low when compared to germinated spores

    Analysis of interactions between domains of a small heat shock protein, Hsp30 of Neurospora crassa

    Full text link

    A STUDY OF REPRESENTATIVE SATIRE FROM MARK TWAIN\u27S LATER WORKS, 1890-1910.

    No full text
    Abstract not availabl
    • …
    corecore