8,625 research outputs found

    Effective Field Theories for Heavy Quarkonium

    Full text link
    We briefly review how nonrelativistic effective field theories give us a definition of the QCD potentials and a coherent field theory derived quantum mechanical scheme to calculate the properties of bound states made by two or more heavy quarks. In this framework heavy quarkonium properties depend only on the QCD parameters (quark masses and \als) and nonpotential corrections are systematically accounted for. The relation between the form of the nonperturbative potentials and the low energy QCD dynamics is also discussed.Comment: Invited Plenary talk at The 20th European Conference on Few-Body Problems in Physics. September 10-14 2007. Pisa, Italy. To be published on Few-Body System

    Three-body relativistic flux tube model from QCD Wilson-loop approach

    Get PDF
    First we review the derivation of the relativistic flux tube model for a quark-antiquark system from Wilson area law as we have given in a preceding paper. Then we extend the method to the three-quark case and obtain a Lagrangian corresponding to a star flux tube configuration. A Hamiltonian can be explicitly constructed as an expansion in 1/m21 / m^2 or in the string tension σ\sigma. In the first case it reproduces the Wilson loop three-quark semirelativistic potential; in the second one, very complicated in general, but it reproduces known string models for slowly rotating quarks.Comment: 14 pages, latex, uses elsart.sty, 2 figures available upon reques

    The qqˉq \bar{q} relativistic interaction in the Wilson loop approach

    Full text link
    We study the qqˉq \bar{q} relativistic interaction starting from the Feynman-Schwinger representation of the gauge-invariant quark-antiquark Green function. We focus on the one-body limit and discuss the obtained non-perturbative interaction kernel of the Dirac equation.Comment: 5 pages, Latex (espcrc2.sty) To be published in the proceedings of High-Energy Physics International Euroconference on Quantum Chromodynamics:QCD97; 25th Anniversary of QCD, Montpellier, France, 3-9 July 199

    The 1P quarkonium fine splittings at NLO

    Full text link
    We calculate the 1P heavy quarkonium fine splittings at NLO and discuss the impact of the calculation on the chi_b(1P) splittings.Comment: 10 pages, 3 figure

    Heavy Quarkonium Physics from Effective Field Theories

    Get PDF
    I review recent progress in heavy quarkonium physics from an effective field theory perspective. In this unifying framework, I discuss advances in perturbative calculations for low-lying quarkonium observables and in lattice calculations for high-lying ones, and progress and lasting puzzles in quarkonium production.Comment: Plenary talk at the 4th International Conference on Quarks and Nuclear Physics (QNP06), 5-10 June 2006, Madrid, Spain; 6 pages, 1 figure, EPJ styl

    Quarkonium Spectroscopy and Perturbative QCD: A New Perspective

    Get PDF
    We study the energy spectrum of bottomonium in perturbative QCD, taking alpha_s(Mz)=0.1181 +/- 0.0020 as input and fixing m_b^{MSbar}(m_b^{MSbar}) on the Upsilon(1S) mass. Contrary to wide beliefs, perturbative QCD reproduces reasonably well the gross structure of the spectrum as long as the coupling constant remains smaller than one. We perform a detailed analysis and discuss the size of non-perturbative effects. A new qualitative picture on the structure of the bottomonium spectrum is provided. The lowest-lying (c,cbar) and (b,cbar) states are also examined.Comment: 12 pages, 2 figures; Discussion on ultra-soft effects included; Some conservative error estimates added; Version to appear in Phys.Lett.

    Poincare' invariance and the heavy-quark potential

    Get PDF
    We derive and discuss the constraints induced by Poincare' invariance on the form of the heavy-quark potential up to order 1/m^2. We present two derivations: one uses general arguments directly based on the Poincare' algebra and the other follows from an explicit calculation on the expression of the potential in terms of Wilson loops. We confirm relations from the literature, but also clarify the origin of a long-standing false statement pointed out recently.Comment: 20 pages, 4 figure
    corecore