246 research outputs found

    Pulsed 86Sr-labeling and NanoSIMS imaging to study coral biomineralization at ultra-structural length scales

    Get PDF
    A method to label marine biocarbonates is developed based on a concentration enrichment of a minor stable isotope of a trace element that is a natural component of seawater, resulting in the formation of biocarbonate with corresponding isotopic enrichments. This biocarbonate is subsequently imaged with a NanoSIMS ion microprobe to visualize the locations of the isotopic marker on sub-micrometric length scales, permitting resolution of all ultra-structural details. In this study, a scleractinian coral, Pocillopora damicornis, was labeled 3 times with 86Sr-enhanced seawater for a period of 48h with 5days under normal seawater conditions separating each labeling event. Two non-specific cellular stress biomarkers, glutathione-S-transferase activity and porphyrin concentration plus carbonic anhydrase, an enzymatic marker involved in the physiology of carbonate biomineralization, as well as unchanged levels of zooxanthellae photosynthesis efficiency indicate that coral physiological processes are not affected by the 86Sr-enhancement. NanoSIMS images of the 86Sr/44Ca ratio in skeleton formed during the experiment allow for a determination of the average extension rate of the two major ultra-structural components of the coral skeleton: Rapid Accretion Deposits are found to form on average about 4.5 times faster than Thickening Deposits. The method opens up new horizons in the study of biocarbonate formation because it holds the potential to observe growth of calcareous structures such as skeletons, shells, tests, spines formed by a wide range of organisms under essentially unperturbed physiological condition

    Planning & Acting: Optimal Markov Decision Scheduling of Aggregated Data in WSNs by Genetic Algorithm

    Get PDF
    Data aggregation techniques have emerged as promising solutions for extending Wireless Sensor Networks (WSNs) lifetime. However, this approach suffers from a design issue in delivering the strict requirements needed by some monitoring applications. Carefully balancing Energy, Delay and Accuracy is essential for achieving these requirements. In this work, we focus on distributed data aggregation, where a sensor estimates the network information by the exchange of readings with different priority levels. We then propose an optimal decision policy for scheduling the transmission of the aggregated data at the node level. To model the investigated problem, we first adopt Markov Decision Process (MDP) whereby we define the reward function. Then, we apply a Genetic Algorithm (GA) to find a set of optimal decisions that ensures the best trade-off between energy saving, delay and accuracy of the received data based on their priority level. The simulation results yield excellent performance and our optimization shows a significant enhancement up to 20% compared to the other policies

    An efficient partial data aggregation scheme in WSNs

    Get PDF
    Highly accurate event detection makes Wireless Sensor Networks popular for real time monitoring applications. Wireless sensor systems that monitor physical and environmental conditions are expected to be deployed with high density, a situation which leads to spatial correlations and redundancy of the collected data. Eliminating these redundancies extends the network lifetime by reducing energy consumption and enhances the velocity of transmitting emergency and periodic messages. In this work, we focus on the scenario where sensors are grouped into clusters. Each Cluster Head (CH) receives samplings from its Cluster Members (CMs), and decides when it should stop sampling, and starts transmitting the resulting packet from the aggregation process in order to reduce the end-to-end delay and ensure the accuracy of the transmitted data. To this end, we propose a cluster based aggregation scheme which determines, at the CH level, the best timing for achieving a short delay, and provides an efficient buffer management strategy for maintaining low energy consumption. Evaluation results based on simulations show that our scheme achieves a good trade-off between energy consumption and end-to-end delay

    Messages prioritization in IEEE 802.15.4 based WSNs for roadside infrastructure

    Get PDF
    Wireless Sensor Networks (WSNs) have gained wide-scale popularity for real-time events monitoring and detection due to their high accuracy and ease of deployment. Therefore, they have become increasingly prevalent solutions in several application domains such as health-care, transportation, etc. Many studies in the literature have focused on optimizing the energy consumption of the wireless sensors in order to ensure their autonomous operation for longer periods. Some applications of WSNs, however, have strict delay requirements due to the nature of the information being transmitted. This delay should be kept as short as possible to ensure timely and efficient reaction of the system, such as a Traffic Management System (TMS) dealing with an incident on the road. In this context, we propose in this work, two novel schemes to reduce the transmission delay of prioritized messages in WSNs deployed in road networks to report regular traffic as well as event-driven (i.e. incidents) information. These schemes improve the backoff computation mechanism at the MAC layer of IEEE 802.15.4 standard protocol, by providing an original dual mode operation mechanism which speeds up the transmission of event-driven messages, while keeping the transmission delay of periodic messages reasonably low. Simulation results show that our schemes succeed in reducing the transmission delay of event-driven messages and achieve a very high packets delivery ratio

    Optical and photoelectronic properties of a new material:Optoelectronic application

    Get PDF
    With the aim of studying the optical, electrochemical, and electronic properties of a new porphyrin-based material, we have synthesized a new porphyrinic complex, namely the (4,4′^{\prime}-bipyridine)(meso-tetratrifluoromethylphenylporphyrinato)zinc(II) 4,4′^{\prime}-bipyridine disolvate dihydrate complex with the formula [Zn(TFMPP)(4,4′^{\prime}-bipy)]⋅{\cdot }2(4,4′^{\prime}-bipy)⋅{\cdot }2H2O (I). This species is characterized by single-crystal X-ray molecular structure. The optical study is performed by UV–visible absorption and fluorescence spectroscopy. The fluorescence intensity presents an emission in the UV–visible range, indicating that this compound can be used as an optoelectronic material. The optical energy gap is 1.95 eV, and the current–voltage characteristics and impedance spectroscopy measurements have been studied to define the electronic properties of the zinc (II) porphyrin complex. The barrier height ϕb{\phi }_{\mathrm{b}} is calculated, and the space-charge limited current mechanism is found to control the conductance. The results from the electronic study confirm that our porphyrin derivative can be used for various optoelectronic applications

    Pulsed 86Sr-labeling and NanoSIMS imaging to study coral biomineralization at ultra-structural length scales

    Get PDF
    A method to label marine biocarbonates is developed based on a concentration enrichment of a minor stable isotope of a trace element that is a natural component of seawater, resulting in the formation of biocarbonate with corresponding isotopic enrichments. This biocarbonate is subsequently imaged with a NanoSIMS ion microprobe to visualize the locations of the isotopic marker on sub-micrometric length scales, permitting resolution of all ultra-structural details. In this study, a scleractinian coral, Pocillopora damicornis, was labeled 3 times with Sr-86-enhanced seawater for a period of 48 h with 5 days under normal seawater conditions separating each labeling event. Two non-specific cellular stress biomarkers, glutathione-S-transferase activity and porphyrin concentration plus carbonic anhydrase, an enzymatic marker involved in the physiology of carbonate biomineralization, as well as unchanged levels of zooxanthellae photosynthesis efficiency indicate that coral physiological processes are not affected by the Sr-86-enhancement. NanoSIMS images of the Sr-86/Ca-44 ratio in skeleton formed during the experiment allow for a determination of the average extension rate of the two major ultra-structural components of the coral skeleton: Rapid Accretion Deposits are found to form on average about 4.5 times faster than Thickening Deposits. The method opens up new horizons in the study of biocarbonate formation because it holds the potential to observe growth of calcareous structures such as skeletons, shells, tests, spines formed by a wide range of organisms under essentially unperturbed physiological conditions

    Avapritinib versus regorafenib in locally advanced unresectable or metastatic GI stromal tumor: A randomized, open-label phase III study

    Get PDF
    PURPOSE Primary or secondary mutations in KIT or platelet-derived growth factor receptor alpha (PDGFRA) underlie tyrosine kinase inhibitor resistance in most GI stromal tumors (GISTs). Avapritinib selectively and potently inhibits KIT- and PDGFRA-mutant kinases. In the phase I NAVIGATOR study (NCT02508532), avapritinib showed clinical activity against PDGFRA D842V–mutant and later-line KIT-mutant GIST. VOYAGER (NCT03465722), a phase III study, evaluated efficacy and safety of avapritinib versus regorafenib as third-line or later treatment in patients with unresectable or metastatic GIST. PATIENTS AND METHODS VOYAGER randomly assigned patients 1:1 to avapritinib 300 mg once daily (4 weeks continuously) or regorafenib 160 mg once daily (3 weeks on and 1 week off). Primary end point was progression-free survival (PFS) by central radiology per RECIST version 1.1 modified for GIST. Secondary end points included objective response rate, overall survival, safety, disease control rate, and duration of response. Regorafenib to avapritinib crossover was permitted upon centrally confirmed disease progression. RESULTS Four hundred seventy-six patients were randomly assigned (avapritinib, n 5 240; regorafenib, n 5 236). Median PFS was not statistically different between avapritinib and regorafenib (hazard ratio, 1.25; 95% CI, 0.99 to 1.57; 4.2 v 5.6 months; P 5 .055). Overall survival data were immature at cutoff. Objective response rates were 17.1% and 7.2%, with durations of responses of 7.6 and 9.4 months for avapritinib and regorafenib; disease control rates were 41.7% (95% CI, 35.4 to 48.2) and 46.2% (95% CI, 39.7 to 52.8). Treatment-related adverse events (any grade, grade $ 3) were similar for avapritinib (92.5% and 55.2%) and regorafenib (96.2% and 57.7%). CONCLUSION Primary end point was not met. There was no significant difference in median PFS between avapritinib and regorafenib in patients with molecularly unselected, late-line GIST

    Shared Skeletal Support in a Coral-Hydroid Symbiosis

    Get PDF
    Hydroids form symbiotic relationships with a range of invertebrate hosts. Where they live with colonial invertebrates such as corals or bryozoans the hydroids may benefit from the physical support and protection of their host's hard exoskeleton, but how they interact with them is unknown. Electron microscopy was used to investigate the physical interactions between the colonial hydroid Zanclea margaritae and its reef-building coral host Acropora muricata. The hydroid tissues extend below the coral tissue surface sitting in direct contact with the host's skeleton. Although this arrangement provides the hydroid with protective support, it also presents problems of potential interference with the coral's growth processes and exposes the hydroid to overgrowth and smothering. Desmocytes located within the epidermal layer of the hydroid's perisarc-free hydrorhizae fasten it to the coral skeleton. The large apical surface area of the desmocyte and high bifurcation of the distal end within the mesoglea, as well as the clustering of desmocytes suggests that a very strong attachment between the hydroid and the coral skeleton. This is the first study to provide a detailed description of how symbiotic hydroids attach to their host's skeleton, utilising it for physical support. Results suggest that the loss of perisarc, a characteristic commonly associated with symbiosis, allows the hydroid to utilise desmocytes for attachment. The use of these anchoring structures provides a dynamic method of attachment, facilitating detachment from the coral skeleton during extension, thereby avoiding overgrowth and smothering enabling the hydroid to remain within the host colony for prolonged periods of time
    • …
    corecore