12 research outputs found

    The neodymium isotope fingerprint of Adélie coast bottom water

    Get PDF
    Adélie Land Bottom Water (ALBW), a variety of Antarctic Bottom Water formed off the Adélie Land coast of East Antarctica, ventilates the abyssal layers of the Australian sector of the Southern Ocean as well as the eastern Indian and Pacific Oceans. We present the first dissolved neodymium (Nd) isotope and concentration measurements for ALBW. The summertime signature of ALBW is characterized by εNd = −8.9, distinct from Ross Sea Bottom Water, and similar to Weddell Sea Bottom Water. Adélie Land Shelf Water, the precursor water mass for wintertime ALBW, features the least radiogenic Nd fingerprint observed around Antarctica to date (εNd = −9.9). Local geology around Antarctica is important in setting the chemical signature of individual varieties of Antarctic Bottom Water, evident from the shelf water signature, which should be considered in the absence of direct wintertime observations

    Twelve thousand years of dust: The Holocene global dust cycle constrained by natural archives

    Get PDF
    Mineral dust plays an important role in the climate system by interacting with radiation, clouds, and biogeochemical cycles. In addition, natural archives show that the dust cycle experienced variability in the past in response to global and local climate change. The compilation of the DIRTMAP paleodust datasets in the last two decades provided a target for paleoclimate models that include the dust cycle, following a time slice approach. We propose an innovative framework to organize a paleodust dataset that moves on from the positive experience of DIRTMAP and takes into account new scientific challenges, by providing a concise and accessible dataset of temporally resolved records of dust mass accumulation rates and particle grain-size distributions. We consider data from ice cores, marine sediments, loess/paleosol sequences, lake sediments, and peat bogs for this compilation, with a temporal focus on the Holocene period. This global compilation allows investigation of the potential, uncertainties and confidence level of dust mass accumulation rates reconstructions, and highlights the importance of dust particle size information for accurate and quantitative reconstructions of the dust cycle. After applying criteria that help to establish that the data considered represent changes in dust deposition, 43 paleodust records have been identified, with the highest density of dust deposition data occurring in the North Atlantic region. Although the temporal evolution of dust in the North Atlantic appears consistent across several cores and suggest that minimum dust fluxes are likely observed during the Early to mid-Holocene period (6000–8000 years ago), the magnitude of dust fluxes in these observations is not fully consistent, suggesting that more work needs to be done to synthesize datasets for the Holocene. Based on the data compilation, we used the Community Earth System Model to estimate the mass balance and variability of the global dust cycle during the Holocene, with dust load ranging from 17.1 to 20.5 Tg between 2000 and 10 000 years ago, and a minimum in the Early to Mid-Holocene (6000–8000 years ago)

    Assessing the Ability of Zonal δ 18

    No full text

    The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr

    Get PDF
    Reconstructions of eolian dust accumulation in northwest African margin sediments provide important continuous records of past changes in atmospheric circulation and aridity in the region. Existing records indicate dramatic changes in North African dust emissions over the last 20 ka, but the limited spatial extent of these records and the lack of high-resolution flux data do not allow us to determine whether changes in dust deposition occurred with similar timing, magnitude and abruptness throughout northwest Africa. Here we present new records from a meridional transect of cores stretching from 31 degrees N to 19 degrees N along the northwest African margin. By combining grain size endmember modeling with Th-230-normalized fluxes for the first time, we are able to document spatial and temporal changes in dust deposition under the North African dust plume throughout the last 20 ka. Our results provide quantitative estimates of the magnitude of dust flux changes associated with Heinrich Stadial 1, the Younger Dryas, and the African Humid Period (AHP; similar to 11.7-5 ka), offering robust targets for model-based estimates of the climatic and biogeochemical impacts of past changes in North African dust emissions. Our data suggest that dust fluxes between 8 and 6 ka were a factor of similar to 5 lower than average fluxes during the last 2 ka. Using a simple model to estimate the effects of bioturbation on dust input signals, we find that our data are consistent with abrupt, synchronous changes in dust fluxes in all cores at the beginning and end of the AHP. The mean ages of these transitions are 11.8 +/- 0.2 ka (1 sigma) and 4.9 +/- 0.2 ka, respectively

    Viability of revegetation incentives for meeting biodiversity and salinity objectives in the Goulburn-Broken Dryland

    Get PDF
    This report is part of a project being undertaken by the Charles Sturt University Johnstone Centre and the Department of Natural Resources and Environment (DNRE). The research examined ways in which salinity mitigation and biodiversity conservation can be achieved in the dryland portion of the Goulburn Broken Catchment. The project had four main stages. 1. A literature review and interviews with key stakeholders were undertaken to identify social factors affecting the implementation of the Goulburn-Broken Dryland Salinity Management Plan (GBDSMP), particularly with respect to the poor adoption rates for best management practices (BMPs). 2. Landholders were surveyed to explore the social factors identified in Stage 1, including the constraints that have prevented landholders adopting BMPs. The results of the survey have been published in Curtis et al. (2001). 3. A literature review of natural resource management policy approaches in Australia and a workshop with experts were used to identify policy options that would improve the adoption of BMPs in a revised GBDSMP. The review has been published as MacKay et al. (2000) and a summary of the workshop is given in Lockwood & Hawke (2000). A review was also undertaken of the potential of carbon credits to contribute to salinity mitigation (Hawke 2000a). 4. One of the requirements for salinity mitigation is to increase the area of perennial vegetation in the catchment. If this can be achieved, at least in part, through re-establishing native vegetation, then biodiversity objectives will also be addressed. A survey was undertaken to assess the extent to which the required level of revegetation could be achieved through re-establishment of native vegetation, and the amount of public investment that would be required. This report addresses the fourth stage

    Monsoon-driven Saharan dust variability over the past 240,000 years

    Get PDF
    Reconstructions of past Saharan dust deposition in marine sediments provide foundational records of North African climate over time scales of 103 to 106 years. Previous dust records show primarily glacial-interglacial variability in the Pleistocene, in contrast to other monsoon records showing strong precessional variability. Here, we present the first Saharan dust record spanning multiple glacial cycles obtained using 230Th normalization, an improved method of calculating fluxes. Contrary to previous data, our record from the West African margin demonstrates high correlation with summer insolation and limited glacial-interglacial changes, indicating coherent variability in the African monsoon belt throughout the late Pleistocene. Our results demonstrate that low-latitude Saharan dust emissions do not vary synchronously with high- and mid-latitude dust emissions, and they call into question the use of existing Plio-Pleistocene dust records to investigate links between climate and hominid evolution

    Paleodust variability since the Last Glacial Maximum and implications for iron inputs to the ocean

    No full text
    Changing climate conditions affect dust emissions and the global dust cycle, which in turn affects climate and biogeochemistry. In this study we use observationally constrained model reconstructions of the global dust cycle since the Last Glacial Maximum, combined with different simplified assumptions of atmospheric and sea ice processing of dust-borne iron, to provide estimates of soluble iron deposition to the oceans. For different climate conditions, we discuss uncertainties in model-based estimates of atmospheric processing and dust deposition to key oceanic regions, highlighting the large degree of uncertainty of this important variable for ocean biogeochemistry and the global carbon cycle. We also show the role of sea ice acting as a time buffer and processing agent, which results in a delayed and pulse-like soluble iron release into the ocean during the melting season, with monthly peaks up to similar to 17 Gg/month released into the Southern Oceans during the Last Glacial Maximum (LGM)

    Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives

    No full text
    Mineral dust plays an important role in the climate system by interacting with radiation, clouds, and biogeochemical cycles. In addition, natural archives show that the dust cycle experienced variability in the past in response to global and local climate change. The compilation of the DIRTMAP (Dust Indicators and Records from Terrestrial and MArine Palaeoenvironments) paleodust data sets in the last 2 decades provided a benchmark for paleoclimate models that include the dust cycle, following a time slice approach. We propose an innovative framework to organize a paleodust data set that builds on the positive experience of DIRTMAP and takes into account new scientific challenges by providing a concise and accessible data set of temporally resolved records of dust mass accumulation rates and particle grain size distributions. We consider data from ice cores, marine sediments, loess–paleosol sequences, lake sediments, and peat bogs for this compilation, with a temporal focus on the Holocene period. This global compilation allows the investigation of the potential, uncertainties, and confidence level of dust mass accumulation rate reconstructions and highlights the importance of dust particle size information for accurate and quantitative reconstructions of the dust cycle. After applying criteria that help to establish that the data considered represent changes in dust deposition, 45 paleodust records have been identified, with the highest density of dust deposition data occurring in the North Atlantic region. Although the temporal evolution of dust in the North Atlantic appears consistent across several cores and suggests that minimum dust fluxes are likely observed during the early to mid-Holocene period (6000–8000 years ago), the magnitude of dust fluxes in these observations is not fully consistent, suggesting that more work needs to be done to synthesize data sets for the Holocene. Based on the data compilation, we used the Community Earth System Model to estimate the mass balance of and variability in the global dust cycle during the Holocene, with dust loads ranging from 17.2 to 20.8 Tg between 2000 and 10 000 years ago and with a minimum in the early to mid-Holocene (6000–8000 years ago)
    corecore