8,221 research outputs found

    Two-photon laser-induced fluorescence detection of OH

    Get PDF
    The TP-LIF OH sensor is based on the principle that a molecule having multiple energy states, all of which are bonding, can be pumped into the highest state with the resulting fluorescence being blue-shifted relative to all pumping wavelengths. In this way, one can successfully discriminate against virtually all noise sources in the system using long wavelength blocking filters in conjunction with solar-blind photomultiplier tubes. Thus, these systems tend to be signal limited rather than signal-to-noise limited as is true of the SP-LIF technique as well as other conventional analytical methods. The trick to achieving the above sampling scheme, with high efficiency, is in the use of high photon fluxes of short time duration. Obviously, the latter type of light source is fulfilled nicely by available pulsed lasers. From an operational point of view, however, this laser source needs to be tunable. The latter characteristic permits extremely high selectivity for the detection of a diatomic or simple polyatomic molecule by taking advantage of the high-resolution spectroscopic features of these type species

    X-ray Source Heights in a Solar Flare: Thick-target versus Thermal Conduction Front Heating

    Full text link
    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 28 November 2002 C1.1 flare, first observed with RHESSI by Sui et al. 2006 and quantitatively analyzed by O'Flannagain et al. 2013, very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.Comment: Accepted to Ap

    UK and EU policy for approval of pesticides suitable for organic systems: Implications for Wales

    Get PDF
    This study was commissioned by the Welsh Assembly Government (WAG) to review the pesticide approval system in the UK and Europe as far as it affects the use of substances and techniques for crop protection by organic producers in Wales. WAG considers it important that the UK pesticide approval system does not present unnecessary barriers to the development of organic production in Wales. Key Recommendations and scope for further work Ā· WAG should work with the Pesticides Safety Directorate to ensure that the development of pesticide regulatory policy at both National and European level takes full account of the needs of both conventional and organic agriculture and horticulture in the UK. Ā· There is scope for WAG to support the development of a National Pesticide Policy so that regulatory and commercial barriers impeding the development of organic pesticides are minimised. Not only could greater availability of ā€˜organic pesticidesā€™ have a significant impact on organic production in Wales but there could be important implications for conventional horticulture systems and the use of alternatives to conventional pesticides. Ā· One important regulatory barrier to the registration of ā€˜organic pesticidesā€™ is the MRL requirement(s) for their approval and this needs to be resolved. Suitable analytical techniques are required to determine firstly whether these substances result in residues, and secondly to identify the breakdown and residue pathways. So far, this issue has not received the attention of any EU Member State. Ā· According to the proposed framework for the 4th Stage Review of EU Pesticides Directive 91/414, notifiers are required to produce a dossier, at their own expense, covering characterisation, human toxicity, ecotoxicity efficacy and other relevant data. The Review includes specific provision for companies notifying the same substance to submit a shared dossier. This will help those businesses (many of which are relatively small companies) to save on the high cost of producing the dossiers. It will also aid the Commission since it will reduce the number of dossiers that have to be considered, and ensure that all the available data is included. WAG should encourage and support the production of collective dossiers; although as yet there is no indication of how this will be done in practice, and further details from the Commission are awaited. Ā· This study has concluded that access to a wider range of ā€˜organically acceptable pesticidesā€™ would not have a dramatic impact on organic production in Wales. However, in developing an integrated organic policy, WAG should continue to address the pesticides issue. Some of the methods of pest & disease control in organic systems are either physical or multi-cellular e.g. micro-organisms used as biocontrol agents. WAG agri environment policy may provide a vehicle to promote these techniques much more actively. Further, it is important to recognise that while Wales alone is too small to have a major impact on commercial and regulatory pressures, WAG can have an impact by working pro-actively with others to make progress. Ā· There are no published EU or national Member State criteria that can be used to evaluate the acceptability of pesticide substances for organic production. Identifying such criteria and promoting their acceptance at EU level and nationally would allow more active substances to be made available. WAG should work with PSD and others to identify appropriate criteria. Ā· The specific provisions of Article 7 in Annex 2(b) of the Organic Regulation (2092/91) place potential barriers to the adoption of organically acceptable substances for crop protection. There are a number of potentially useful substances currently not included in the Organic Regulation e.g. potassium bicarbonate. WAG should work with PSD and others to identify such substances and support the production of appropriate dossiers. WAG could also encourage further dialogue between the organic sector and Defra to identify amendments in the Organic Regulations to facilitate the inclusion of new pesticides. Ā· Organic pest and disease management is not just a question of inputs but it also relies crucially on advice and extension through initiatives such as Farming Connect and the work of Organic Centre Wales. Long-term commitment to supporting on going advice and extension activities is vital to promote and disseminate best practice in Welsh agriculture and horticulture. Ā· Organic horticulture, vegetable and fruit production systems are particularly sensitive to pest and disease management. Successful control of pests, diseases (and weeds) in these sectors can be critical to the business, and is not assured even when all husbandry and management methods have been effectively applied. Consequently, the use of organically acceptable crop protection methods resulting from future developments (e.g. biopesticides, biological control agents) could have an important role in pest and disease management in these sectors. Both organic and conventional producers in Wales could benefit from having these options available to them and WAG could encourage the adoption of these approaches through appropriate Technology Transfer activities. Ā· The way in which such substances will be regulated at a European level in future is evolving as the review of the Pesticide Directive 91/414 EEC enters the 4th Stage. This stage of the review includes (amongst others) those substances permitted for use in organic production. The guidance documents for the evaluation of applications on plant protection products made from plants or plant extracts and from chemical substances are currently at the draft stage. The response of the Pesticide Safety Directorate and Defra to these developments is not yet clear but this provides an excellent opportunity for WAG to have an input at an early stage in the review process

    Child Well-being in the Pacific Rim

    Get PDF
    This study extends previous efforts to compare the well-being of children using multi-dimensional indicators derived from sample survey and administrative series to thirteen countries in the Pacific Rim. The framework for the analysis of child well-being is to organise 46 indicators into 21 components and organise the components into 6 domains: material situation, health, education, subjective well-being, living environment, as well as risk and safety. Overall, Japan, Singapore and Taiwan have the highest child well-being and Thailand, Indonesia and the Philippines the lowest. However, there are substantial variations between the domains. Japan and Korea perform best on the material well-being of children and also do well on health and education but they have the lowest subjective well-being among their children by some margin. There is a relationship between child well-being and GDP per capita but children in China have higher well-being than you would expect given their GDP and children in Australia have lower well-being. The analysis is constrained by missing data particularly that the Health Behaviour of School-Aged Children Survey is not undertaken in any of these countries

    Capillary acquisition devices for high-performance vehicles: Executive summary

    Get PDF
    Technology areas critical to the development of cryogenic capillary devices were studied. Passive cooling of capillary devices was investigated with an analytical and experimental study of wicking flow. Capillary device refilling with settled fluid was studied using an analytical and experimental program that resulted in successful correlation of a versatile computer program with test data. The program was used to predict Centaur D-1S LO2 and LH2 start basket refilling. Comparisons were made between the baseline Centaur D-1S propellant feed system and feed system alternatives including systems using capillary devices. The preferred concepts from the Centaur D-1S study were examined for APOTV and POTV vehicles for delivery and round trip transfer of payloads between LEO and GEO. Mission profiles were determined to provide propellant usage timelines and the payload partials were defined

    Vacuum field energy and spontaneous emission in anomalously dispersive cavities

    Full text link
    Anomalously dispersive cavities, particularly white light cavities, may have larger bandwidth to finesse ratios than their normally dispersive counterparts. Partly for this reason, their use has been proposed for use in LIGO-like gravity wave detectors and in ring-laser gyroscopes. In this paper we analyze the quantum noise associated with anomalously dispersive cavity modes. The vacuum field energy associated with a particular cavity mode is proportional to the cavity-averaged group velocity of that mode. For anomalously dispersive cavities with group index values between 1 and 0, this means that the total vacuum field energy associated with a particular cavity mode must exceed ā„Ļ‰/2\hbar \omega/2. For white light cavities in particular, the group index approaches zero and the vacuum field energy of a particular spatial mode may be significantly enhanced. We predict enhanced spontaneous emission rates into anomalously dispersive cavity modes and broadened laser linewidths when the linewidth of intracavity emitters is broader than the cavity linewidth.Comment: 9 pages, 4 figure

    Laser-controlled fluorescence in two-level systems

    Get PDF
    The ability to modify the character of fluorescent emission by a laser-controlled, optically nonlinear process has recently been shown theoretically feasible, and several possible applications have already been identified. In operation, a pulse of off-resonant probe laser beam, of sufficient intensity, is applied to a system exhibiting fluorescence, during the interval of excited- state decay following the initial excitation. The result is a rate of decay that can be controllably modified, the associated changes in fluorescence behavior affording new, chemically specific information. In this paper, a two-level emission model is employed in the further analysis of this all-optical process; the results should prove especially relevant to the analysis and imaging of physical systems employing fluorescent markers, these ranging from quantum dots to green fluorescence protein. Expressions are presented for the laser-controlled fluorescence anisotropy exhibited by samples in which the fluorophores are randomly oriented. It is also shown that, in systems with suitably configured electronic levels and symmetry properties, fluorescence emission can be produced from energy levels that would normally decay nonradiatively. Ā© 2010 American Chemical Society

    Rethink fuel poverty as a complex problem

    Get PDF

    Analysis and Modeling of Two Flare Loops Observed by AIA and EIS

    Full text link
    We analyze and model an M1.0 flare observed by SDO/AIA and Hinode/EIS to investigate how flare loops are heated and evolve subsequently. The flare is composed of two distinctive loop systems observed in EUV images. The UV 1600 \AA emission at the feet of these loops exhibits a rapid rise, followed by enhanced emission in different EUV channels observed by AIA and EIS. Such behavior is indicative of impulsive energy deposit and the subsequent response in overlying coronal loops that evolve through different temperatures. Using the method we recently developed, we infer empirical heating functions from the rapid rise of the UV light curves for the two loop systems, respectively, treating them as two big loops of cross-sectional area 5\arcsec by 5\arcsec, and compute the plasma evolution in the loops using the EBTEL model (Klimchuk et al. 2008). We compute the synthetic EUV light curves, which, with the limitation of the model, reasonably agree with observed light curves obtained in multiple AIA channels and EIS lines: they show the same evolution trend and their magnitudes are comparable by within a factor of two. Furthermore, we also compare the computed mean enthalpy flow velocity with the Doppler shift measurements by EIS during the decay phase of the two loops. Our results suggest that the two different loops with different heating functions as inferred from their footpoint UV emission, combined with their different lengths as measured from imaging observations, give rise to different coronal plasma evolution patterns captured both in the model and observations.Comment: Accepted for publication in Ap

    Interparticle interactions:Energy potentials, energy transfer, and nanoscale mechanical motion in response to optical radiation

    Get PDF
    In the interactions between particles of material with slightly different electronic levels, unusually large shifts in the pair potential can result from photoexcitation, and on subsequent electronic excitation transfer. To elicit these phenomena, it is necessary to understand the fundamental differences between a variety of optical properties deriving from dispersion interactions, and processes such as resonance energy transfer that occur under laser irradiance. This helps dispel some confusion in the recent literature. By developing and interpreting the theory at a deeper level, one can anticipate that in suitable systems, light absorption and energy transfer will be accompanied by significant displacements in interparticle separation, leading to nanoscale mechanical motion
    • ā€¦
    corecore