7,051 research outputs found

    Emergence of Kinetic Behavior in Streaming Ultracold Neutral Plasmas

    Get PDF
    We create streaming ultracold neutral plasmas by tailoring the photoionizing laser beam that creates the plasma. By varying the electron temperature, we control the relative velocity of the streaming populations, and, in conjunction with variation of the plasma density, this controls the ion collisionality of the colliding streams. Laser-induced fluorescence is used to map the spatially resolved density and velocity distribution function for the ions. We identify the lack of local thermal equilibrium and distinct populations of interpenetrating, counter-streaming ions as signatures of kinetic behavior. Experimental data is compared with results from a one-dimensional, two-fluid numerical simulation.Comment: 8 pages, 6 figure

    B-field Determination from Magnetoacoustic Oscillations in kHz QPO Neutron Star Binaries: Theory and Observations

    Get PDF
    We present a method for determining the B-field around neutron stars based on observed kHz and viscous QPO frequencies used in combination with the best-fit optical depth and temperature of a Comptonization model. In the framework of the transition layer QPO model, we analyze magnetoacoustic wave formation in the layer between a neutron star surface and the inner edge of a Keplerian disk. We derive formulas for the magnetoacoustic wave frequencies for different regimes of radial transition layer oscillations. We demonstrate that our model can use the QPO as a new kind of probe to determine the magnetic field strengths for 4U 1728-42, GX 340+0, and Sco X-1 in the zone where the QPOs occur. Observations indicate that the dependence of the viscous frequency on the Keplerian frequency is closely related to the inferred dependence of the magnetoacoustic wave frequency on the Keplerian frequency for a dipole magnetic field. The magnetoacoustic wave dependence is based on a single parameter, the magnetic moment of the star as estimated from the field strength in the transition layer. The best-fit magnetic moment parameter is about (0.5-1)x 10^{25} G cm^3 for all studied sources. From observational data, the magnetic fields within distances less 20 km from neutron star for all three sources are strongly constrained to be dipole fields with the strengths 10^{7-8} G on the neutron star surface.Comment: 10 pages, 1 figure, accepted for the Astrophysical Journal Letter

    Towards the Important Unification of Congestion Control and Linked Lists

    Full text link
    The cyberinformatics method to rasterization is defined not only by the unproven unification of expert systems and the partition table, but also by the intuitive need for IPv6 [24]. Given the current status of wearable methodologies, developers obviously desire the construction of erasure coding that paved the way for the investigation of object-oriented languages, which embodies the compelling principles of artificial intelligence. We describe an efficient tool for developing IPv4, which we call Lagging

    Laser-controlled fluorescence in two-level systems

    Get PDF
    The ability to modify the character of fluorescent emission by a laser-controlled, optically nonlinear process has recently been shown theoretically feasible, and several possible applications have already been identified. In operation, a pulse of off-resonant probe laser beam, of sufficient intensity, is applied to a system exhibiting fluorescence, during the interval of excited- state decay following the initial excitation. The result is a rate of decay that can be controllably modified, the associated changes in fluorescence behavior affording new, chemically specific information. In this paper, a two-level emission model is employed in the further analysis of this all-optical process; the results should prove especially relevant to the analysis and imaging of physical systems employing fluorescent markers, these ranging from quantum dots to green fluorescence protein. Expressions are presented for the laser-controlled fluorescence anisotropy exhibited by samples in which the fluorophores are randomly oriented. It is also shown that, in systems with suitably configured electronic levels and symmetry properties, fluorescence emission can be produced from energy levels that would normally decay nonradiatively. © 2010 American Chemical Society

    The Adsorption and Elution of Platinum Group Metals (Pt, Pd, and Au) from Cyanide Leach Solutions using Activated Carbon

    Get PDF
    This paper investigates the recovery of platinum group metals (PGMs) from a dilute cyanide leach solution containing base metals, in a manner similar to that used for gold extraction in a typical CIP process, and focuses on both the adsorption and elution stages. The carrier-phase extraction of precious metals using activated carbon offers significant advantages over other processes in terms of simplicity, the high pre-concentration factor, rapid phase separation, and relatively low capital and operating costs. As a sorbent, activated carbon is still by far the most important material because of its large surface area, high adsorption capacity, porous structure, negligible environmental toxicity, low cost, and high purity standards. Adsorption tests were performed on a pregnant alkaline leach solution (0.15 ppm Pt, 0.38 ppm Pd, 0.1 ppm Au) resulting from cyanide extraction performed in column leach tests. The initial adsorption rates of platinum, palladium, and gold were very fast and recoveries of these three metals were approximately 90 per cent after 2 hours and 100 per cent, 97.4 per cent, and 99.9 per cent respectively after 72 hours. The parameters that influence the extraction of PGMs and Au were examined to assess their relative importance during the adsorption process in order to provide the basis for process optimization. The concentration of thiocyanate was not identified as significant factor for PGMs adsorption, while nickel concentration was the most significant extraction process parameter. Base metal cyanide complexes adsorb and compete with the PGM complexes for sites on activated carbon, and while copper adsorption can be minimized by adjusting the residence time, nickel adsorbs at approximately the same rate as that of the PGMs, influencing the loading capacity and adsorption kinetics of the PGMs.The feasibility of eluting platinum and palladium cyanide complexes from activated carbon using an analogue of the AARL process was investigated. Platinum and palladium elute from activated carbon almost to completion in 4 to 5 bed volumes at 80°C, while the elution of gold at this temperature is slow, with a significant amount of gold still to be eluted after 16 bed volumes. Cyanide pre-treatment was found to have a significant influence on PGM elution. Higher cyanide concentration in the pre-treatment step results in more efficient elution up to a point, and experiments suggest the possibility of an optimum cyanide concentration, beyond which elution efficiency starts decreasing

    The recovery of copper from a pregnant sulphuric acid bioleach solution with developmental resin Dow XUS43605

    Get PDF
    This paper focuses on the application of ion exchange technology for the recovery of copper from a leach solution originating from a heap bioleach in which base metals are leached from a low-grade ore that bears platinum group metals. Screening tests indicated that Dow XUS43605 has high selectivity for copper over the other metals in the solution, namely nickel, iron, cobalt, zinc, manganese, and aluminium. Batch adsorption kinetic experiments showed that copper adsorption equilibrium is attained at a fast rate. The kinetics of adsorption increased as the temperature was increased from 25°Cto 60°C due to the decrease in solution viscosity and the subsequent improved intra-particle mass diffusion. Single-component Langmuir and Freundlich isotherm models were fitted to the batch copper adsorption equilibrium data, and a maximum copper capacity of26 g/l was observed for Dow XUS43605. The effects of flow rate, temperature, pH, and initial metal concentration on the dynamic recovery of copper were investigated in fixed-bed columns, and it was determined that temperature and flow rate had the most significant impacts on the loading of copper on the resin at copper breakthrough. A 36% increase in copper loading at breakthrough was observed when the temperature was increased from 25°C to 60°C. Finally, it was determined that a split elution is possible by using different concentrations of H2SO4 to first elute co-loaded nickel from the resin, followed by the elution of copper

    The application of activated carbon for the adsorption and elution of platinum group metals from dilute cyanide leach solutions

    Get PDF
    The research presented in this paper investigated the practical aspects of the recovery of platinum group metals (PGMs) from a dilute cyanide leach solution containing base metals, in a manner similar to that used for gold extraction in a typical CIP process, and focuses on both the adsorption and elution stages. The carrier phase extraction of precious metals using activated carbon offers significant advantages over other processes in terms of simplicity, the high pre-concentration factor, rapid phase separation, and relatively low capital and operating costs. As a sorbent, activated carbon is still by far the most important material because of its large surface area, high adsorption capacity, porous structure, negligible environmental toxicity, low cost, and high purity standards. Adsorption tests were conducted on a pregnant alkaline leach solution (0.15 ppm Pt, 0.38 ppm Pd, 0.1 ppm Au) resulting from cyanide extraction performed in column leach tests. The initial adsorption rates of Pt, Pd, and Au were very fast and recoveries of these three metals were approximately 90 per cent after 2 hours, and 100 per cent for Pt, 97.4 per cent for Pd, and 99.9 per cent for Au after 72 hours. The parameters that influence the extraction of PGMs and Au were examined to assess their relative importance during the adsorption process in order to provide the basis for process optimization. The concentration of thiocyanate was not identified as significant factor for PGMs adsorption, while Ni concentration was the most significant extraction process parameter. Base metal cyanide complexes adsorb and compete with the PGM complexes for sites on activated carbon, and while copper adsorption can be minimized by adjusting the residence time, Ni adsorbs at approximately the same rate as the PGMs, influencing the loading capacity and adsorption kinetics of the PGMs.The feasibility of eluting platinum and palladium cyanide complexes from activated carbon using an analogue of the AARL process was investigated. Platinum and palladium elute from activated carbon almost to completion in 4 to 5 bed volumes at 80°C, while the elution of gold at this temperature is slow, with a significant amount of gold still to be eluted after 16 bed volumes. The equilibrium loading of gold is exothermic in nature (Fleming and Nicol, 1984) which will result in an increase in gold elution kinetics with an increase in temperature at similar pre-treatment conditions. A similar result was found for the elution of Pt and Pd. Cyanide pre-treatment was found to have a significant influence on PGM elution. Higher cyanide concentration in the pre-treatment step results in more efficient elution up to a point, and results suggest the possibility of an optimum cyanide concentration, beyond which elution efficiency starts decreasing due to increased ionic strength

    Rapid verification of terminators using the pGR-blue plasmid and golden gate assembly

    Get PDF
    The goal of this protocol is to allow for the rapid verification of bioinformatically identified terminators. Further, the plasmid (pGR-Blue) is designed specifically for this protocol and allows for the quantification of terminator efficiency. As a proof of concept, six terminators were bioinformatically identified in the mycobacteriophage Bernal13. Once identified, terminators were then made as oligonucleotides with the appropriate sticky ends and annealed together. Using Golden Gate Assembly (GGA), terminators were then cloned into pGR-Blue. Under visible light, false positive colonies appear blue and positively transformed colonies are white/yellow. After induction of an arabinose inducible promoter (pBad) with arabinose, colony strength can be determined by measuring the ratio of green fluorescent protein (GFP) produced to red fluorescent protein (RFP) produced. With pGR-Blue, the protocol can be completed in as little as three days and is ideal in an educational setting. Additionally, results show that this protocol is useful as a means for understanding in silico predictions of terminator efficiency related to the regulation of transcription
    corecore