We present a method for determining the B-field around neutron stars based on
observed kHz and viscous QPO frequencies used in combination with the best-fit
optical depth and temperature of a Comptonization model. In the framework of
the transition layer QPO model, we analyze magnetoacoustic wave formation in
the layer between a neutron star surface and the inner edge of a Keplerian
disk. We derive formulas for the magnetoacoustic wave frequencies for different
regimes of radial transition layer oscillations. We demonstrate that our model
can use the QPO as a new kind of probe to determine the magnetic field
strengths for 4U 1728-42, GX 340+0, and Sco X-1 in the zone where the QPOs
occur. Observations indicate that the dependence of the viscous frequency on
the Keplerian frequency is closely related to the inferred dependence of the
magnetoacoustic wave frequency on the Keplerian frequency for a dipole magnetic
field. The magnetoacoustic wave dependence is based on a single parameter, the
magnetic moment of the star as estimated from the field strength in the
transition layer. The best-fit magnetic moment parameter is about (0.5-1)x
10^{25} G cm^3 for all studied sources. From observational data, the magnetic
fields within distances less 20 km from neutron star for all three sources are
strongly constrained to be dipole fields with the strengths 10^{7-8} G on the
neutron star surface.Comment: 10 pages, 1 figure, accepted for the Astrophysical Journal Letter