2,319 research outputs found
Unsupervised home spirometry versus supervised clinic spirometry for respiratory disease: a systematic methodology review and meta-analysis
BACKGROUND: The number of patients completing unsupervised home spirometry has recently increased due to more widely available portable technology and the COVID-19 pandemic, despite a lack of solid evidence to support it. This systematic methodology review and meta-analysis explores quantitative differences in unsupervised spirometry compared with spirometry completed under professional supervision. METHODS: We searched four databases to find studies that directly compared unsupervised home spirometry with supervised clinic spirometry using a quantitative comparison (e.g. Bland-Altman). There were no restrictions on clinical condition. The primary outcome was measurement differences in common lung function parameters (forced expiratory volume in 1â
s (FEV1), forced vital capacity (FVC)), which were pooled to calculate overall mean differences with associated limits of agreement (LoA) and confidence intervals (CI). We used the I2 statistic to assess heterogeneity, the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool to assess risk of bias and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to assess evidence certainty for the meta-analyses. The review has been registered with PROSPERO (CRD42021272816). RESULTS: 3607 records were identified and screened, with 155 full texts assessed for eligibility. We included 28 studies that quantitatively compared spirometry measurements, 17 of which reported a Bland-Altman analysis for FEV1 and FVC. Overall, unsupervised spirometry produced lower values than supervised spirometry for both FEV1 with wide variability (mean difference -107â
mL; LoA=â
-509, 296; I2=95.8%; p<0.001; very low certainty) and FVC (mean difference -184â
mL, LoA=â
-1028, 660; I2=96%; p<0.001; very low certainty). CONCLUSIONS: Analysis under the conditions of the included studies indicated that unsupervised spirometry is not interchangeable with supervised spirometry for individual patients owing to variability and underestimation
SMT-based Model Checking for Recursive Programs
We present an SMT-based symbolic model checking algorithm for safety
verification of recursive programs. The algorithm is modular and analyzes
procedures individually. Unlike other SMT-based approaches, it maintains both
"over-" and "under-approximations" of procedure summaries. Under-approximations
are used to analyze procedure calls without inlining. Over-approximations are
used to block infeasible counterexamples and detect convergence to a proof. We
show that for programs and properties over a decidable theory, the algorithm is
guaranteed to find a counterexample, if one exists. However, efficiency depends
on an oracle for quantifier elimination (QE). For Boolean Programs, the
algorithm is a polynomial decision procedure, matching the worst-case bounds of
the best BDD-based algorithms. For Linear Arithmetic (integers and rationals),
we give an efficient instantiation of the algorithm by applying QE "lazily". We
use existing interpolation techniques to over-approximate QE and introduce
"Model Based Projection" to under-approximate QE. Empirical evaluation on
SV-COMP benchmarks shows that our algorithm improves significantly on the
state-of-the-art.Comment: originally published as part of the proceedings of CAV 2014; fixed
typos, better wording at some place
Design and performance of the ADMX SQUID-based microwave receiver
The Axion Dark Matter eXperiment (ADMX) was designed to detect ultra-weakly
interacting relic axion particles by searching for their conversion to
microwave photons in a resonant cavity positioned in a strong magnetic field.
Given the extremely low expected axion-photon conversion power we have
designed, built and operated a microwave receiver based on a Superconducting
QUantum Interference Device (SQUID). We describe the ADMX receiver in detail as
well as the analysis of narrow band microwave signals. We demonstrate the
sustained use of a SQUID amplifier operating between 812 and 860 MHz with a
noise temperature of 1 K. The receiver has a noise equivalent power of
1.1x10^-24 W/sqrt(Hz) in the band of operation for an integration time of
1.8x10^3 s.Comment: 8 pages, 12 figures, Submitted to Nuclear Inst. and Methods in
Physics Research,
Recommended from our members
Assisting students struggling with mathematics: Response to intervention (RtI) for elementary and middle schools.
Taking early action may be key to helping students struggling with mathematics. The eight recommendations in this guide are designed to help teachers, principals, and administrators use Response to Intervention for the early detection, prevention, and support of students struggling with mathematics
A Search for Scalar Chameleons with ADMX
Scalar fields with a "chameleon" property, in which the effective particle
mass is a function of its local environment, are common to many theories beyond
the standard model and could be responsible for dark energy. If these fields
couple weakly to the photon, they could be detectable through the "afterglow"
effect of photon-chameleon-photon transitions. The ADMX experiment was used in
the first chameleon search with a microwave cavity to set a new limit on scalar
chameleon-photon coupling excluding values between 2*10^9 and 5*10^14 for
effective chameleon masses between 1.9510 and 1.9525 micro-eV.Comment: 4 pages, 3 figure
An experimental study of the dual-fuel performance of a small compression ignition diesel engine operating with three gaseous fuels
A dual-fuel engine is a compression ignition (CI) engine where the primary gaseous fuel source is premixed with air as it enters the combustion chamber. This homogenous mixture is ignited by a small quantity of diesel, the âpilotâ, that is injected towards the end of the compression stroke. In the present study, a direct-injection CI engine, was fuelled with three different gaseous fuels: methane, propane, and butane. The engine performance at various gaseous concentrations was recorded at 1500 r/min and quarter, half, and three-quarters relative to full a load of 18.7 kW. In order to investigate the combustion performance, a novel three-zone heat release rate analysis was applied to the data. The resulting heat release rate data are used to aid understanding of the performance characteristics of the engine in dual-fuel mode.
Data are presented for the heat release rates, effects of engine load and speed, brake specific energy consumption of the engine, and combustion phasing of the three different primary gaseous fuels.
Methane permitted the maximum energy substitution, relative to diesel, and yielded the most significant reductions in CO2. However, propane also had significant reductions in CO2 but had an increased diffusional combustion stage which may lend itself to the modern high-speed direct-injection engine
A SQUID-based microwave cavity search for dark-matter axions
Axions in the micro eV mass range are a plausible cold dark matter candidate
and may be detected by their conversion into microwave photons in a resonant
cavity immersed in a static magnetic field. The first result from such an axion
search using a superconducting first-stage amplifier (SQUID) is reported. The
SQUID amplifier, replacing a conventional GaAs field-effect transistor
amplifier, successfully reached axion-photon coupling sensitivity in the band
set by present axion models and sets the stage for a definitive axion search
utilizing near quantum-limited SQUID amplifiers.Comment: 4 pages, 5 figures, submitted to PR
Differentially Testing Soundness and Precision of Program Analyzers
In the last decades, numerous program analyzers have been developed both by
academia and industry. Despite their abundance however, there is currently no
systematic way of comparing the effectiveness of different analyzers on
arbitrary code. In this paper, we present the first automated technique for
differentially testing soundness and precision of program analyzers. We used
our technique to compare six mature, state-of-the art analyzers on tens of
thousands of automatically generated benchmarks. Our technique detected
soundness and precision issues in most analyzers, and we evaluated the
implications of these issues to both designers and users of program analyzers
Dynamic BradleyâTerry modelling of sports tournaments
Summary.â In the course of national sports tournaments, usually lasting several months, it is expected that the abilities of teams taking part in the tournament will change over time. A dynamic extension of the BradleyâTerry model for paired comparison data is introduced to model the outcomes of sporting contests, allowing for time varying abilities. It is assumed that teamsâ home and away abilities depend on past results through exponentially weighted moving average processes. The model proposed is applied to sports data with and without tied contests, namely the 2009â2010 regular season of the National Basketball Association tournament and the 2008â2009 Italian Serie A football season
Move of a large but delicate apparatus on a trailer with air-ride suspension
When valuable delicate goods are shipped by truck, attention must be paid to
vibrations that may cause damage. We present a case study of moving an
extremely delicate 6230-kg superconducting magnet, immersed in liquid nitrogen,
from Livermore, CA to Seattle, WA showing the steps of fatigue analysis of the
load, a test move, and acceleration monitoring of the final move to ensure a
successful damage-free transport
- âŠ