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Summary. In the course of national sports tournaments, usually lasting several months, it is
expected that the abilities of teams taking part in the tournament will change over time. A
dynamic extension of the Bradley–Terry model for paired comparison data is introduced to
model the outcomes of sporting contests, allowing for time varying abilities. It is assumed that
teams’ home and away abilities depend on past results through exponentially weighted moving
average processes.The model proposed is applied to sports data with and without tied contests,
namely the 2009–2010 regular season of the National Basketball Association tournament and
the 2008–2009 Italian Serie A football season.
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1. Introduction

The analysis of sports data has always aroused great interest among statisticians. Albert et al.
(2005) collected a number of articles that summarize various statistical aspects of interest in
sports data including rating of players or teams, evaluation of sport strategies, enhancement of
sport rules, illustration of statistical methods and forecasting of results.

Sports data have been investigated from different perspectives, often with the aim of fore-
casting the results. A first approach consists in modelling the scores of the two opposing teams.
Maher (1982) employed independent Poisson distributions for the score of each team with means
that depend on the attack and defence strength of teams. Dixon and Coles (1997) proposed an
ad hoc adjustment of the Poisson distribution introducing a dependence parameter that modifies
the probabilities of the results 0–0, 0–1, 1–0 and 1–1. Dixon and Coles (1997) introduced also a
dynamic element in the model updating the parameter estimates including the results up to the
last observation and downweighting observations that are distant in time. Karlis and Ntzou-
fras (2003) suggested applying a bivariate Poisson distribution with a dependence parameter
between the number of goals scored by the two teams and then extended the model to inflate
the probabilities of draws.
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McHale and Scarf (2007) modelled the number of shots of the two teams. They proposed
two different types of Archimedean copula with either Poisson or negative binomial distribu-
tions for the marginals to account for the negative dependence between shots for and shots
against.

Extensions allowing dynamic developments of abilities of the teams were proposed by Rue
and Salvesen (2000) and Crowder et al. (2002). Rue and Salvesen (2000) assumed that the attack
and defence strength parameters of each team follow a Brownian motion process. The model
is estimated by employing Bayesian inference through Markov chain Monte Carlo methods.
Crowder et al. (2002) suggested an auto-regressive model for the attack and defence abilities
of teams. The original model is then replaced by a derived version that is easier to handle by
maximum likelihood.

A second approach to the analysis of sports data consists of modelling the difference in
scores. Clarke and Norman (1995) performed a linear regression of the difference in scores
on the difference in strength of the two teams. Harville (2003) employed a similar specifica-
tion but eliminated the incentives for running up the score beyond a predetermined number of
points. A dynamic specification of strength in this context was considered in Harville (1980) who
proposed an auto-regressive process for the strength of teams in different seasons. Also Glick-
man and Stern (1998) assumed that the evolution of week-by-week and seasonal strength follows
a first-order auto-regressive process; inference is carried out in a Bayesian framework through
Markov chain Monte Carlo algorithms.

Finally, sports data can be analysed by considering only the outcomes of the matches (win–
draw–loss). Goddard and Asimakopoulos (2004) used an ordered probit model to determine
which covariates, e.g. importance of the match, fouls, yellow and red cards, affect the result
of the match. An ordered probit model was adopted also by Koning (2000) who specified the
probability of the outcome as a function of the difference of abilities of the two teams. Kuk (1995)
introduced two strength parameters for each team: one denoting the strength when playing at
home and the other when playing away.

Barry and Hartigan (1993) proposed a dynamic extension for the ability parameters of teams;
they employed a choice model assuming a prior distribution for strength of teams that changes
slowly in time. Fahrmeir and Tutz (1994) considered three possible specifications for the devel-
opment of abilities: a first- and second-order random walk and a local linear trend model. These
models are estimated by using empirical Bayes methods. Glickman (1999) specified a logit model
assuming a prior with normal increments for abilities of teams and proposed an approximate
Bayesian algorithm for ranking purposes. Knorr-Held (2000) employed a logit model assuming
random-walk priors for abilities of teams. The variance of the random walk is estimated through
four different predictive criteria whereas the abilities are estimated by means of the extended
Kalman filter and smoother.

In this paper, we analyse the results of sport tournaments from the last perspective, i.e.
modelling the outcomes of matches. Since we are interested in studying how the strengths of the
teams evolve during the season, we develop a dynamic paired comparison model. In particular,
we model the evolution in time of the abilities in home and away matches of each team through
an exponentially weighted moving average process.

The paper is organized as follows. Section 2 presents two motivating data sets regarding the
American National Basketball Association (NBA) league and the Italian major men’s football
league. Section 3 describes the proposed dynamic version of the Bradley–Terry model, discusses
maximum likelihood estimation and considers model validation by Brier and ranking probabil-
ity scores. The methodology is applied in Section 4 to the data for the two sports. Concluding
remarks and future research are summarized in Section 5.
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The data and R (R Development Core Team, 2011) code written for implementing the anal-
yses are available from

http://www.blackwellpublishing.com/rss

2. Description of the data and analyses with non-dynamic abilities

2.1. National Basketball Association
As our first motivating example we consider the 2009–2010 regular season of the NBA league.
There are 30 teams in the league playing 82 games each: 41 at home and 41 away. The total num-
ber of matches is 1230. The schedule of the tournament includes a greater number of contests
against teams in the same division and in the same conference, whereas competitions between
teams in different conferences are less numerous. The regular season started at the end of Octo-
ber 2009 and ended in mid-April 2010. Matches were played on 164 different days. The number
of matches per day ranges from 1 to 14; the mean number is 7.5.

The description of the proposed methodology for the analysis of tournaments is simplified by
the assumption of an order for the m=1230 matches among the n=30 teams that are involved
in the tournament. A convenient choice is to arrange the matches in chronological order, with
those played at the same time in alphabetic order of the home team. Let Yi be the binary
random variable which denotes the result of the ith match, i = 1, . . . , m, played by the home
team hi against the visiting team vi, with hi, vi = 1, . . . , n, hi /=vi. We arbitrarily code Yi = 1 if
the home team wins and Yi =0 if the visitors win.

Traditional paired comparison models describe the outcome probability as pr.Yi = 1/ =
F.ahi − avi/, where F is a cumulative distribution function and ahi and avi are the param-
eters representing the abilities of the home and the visiting teams in match i. This simple
choice model is commonly termed the Bradley–Terry model (Bradley and Terry, 1952) or the
Thurstone–Mosteller model (Thurstone, 1927; Mosteller, 1951) depending on whether F is the
cumulative distribution function of a logistic or of a standard normal random variable respec-
tively. In the rest of the paper, we shall consider the Bradley–Terry specification.

The advantage deriving from playing at home is commonly taken into account by including
a common home effect parameter η for all teams (Fahrmeir and Tutz, 1994; Knorr-Held, 2000;
Harville, 2003), thus leading to the model

pr.Yi =1/= exp.η +ahi −avi/

1+ exp.η +ahi −avi/
: .1/

Parameter identifiability requires one constraint in the set of abilities, such as the sum con-
straint Σn

k=1ak =0 or the reference team constraint ak =0 for some k ∈{1, . . . , n}.
Table 1 shows the estimates of the abilities âk from model (1) with the sum constraint on

team abilities. Teams are ranked on the basis of the number of matches won during the sea-
son out of the total 82 matches played (the second column). The third column indicates which
percentage of the matches won was played at home. On average circa 60% of the matches are
won by the home team; therefore the advantage in playing at home seems not negligible. The
fourth and sixth columns in Table 1 report the estimated abilities and the ranking according
to the estimated abilities. There is a very close agreement between the ranking that is obtained
by the estimated abilities and the number of matches won; indeed the Kendall rank correlation
τ is 0.97. The estimated home effect (with standard error in parentheses) is η̂ = 0:487.0:067/.
The fifth column of Table 1 reports the quasi-standard errors (Firth and de Menezes, 2004) of
the abilities. The quasi-standard errors allow us to reconstruct approximately the uncertainty
of pairwise differences âk − âk′ used for comparing teams k and k′ without the need to report
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Table 1. 2009–2010 American NBA league†

Team Won % home Results for static model Results for
dynamic model

Ability qse Rank
Ability Rank

Cleveland Cavaliers 61 0.57 1.189 0.267 1 0.769 1
Orlando Magic 59 0.58 1.048 0.260 2 0.568 3
Los Angeles Lakers 57 0.60 0.997 0.254 3 0.650 2
Dallas Mavericks 55 0.51 0.835 0.249 4 0.451 5
Phoenix Suns 54 0.59 0.767 0.248 5 0.382 8
Atlanta Hawks 53 0.64 0.692 0.247 8 0.424 7
Denver Nuggets 53 0.64 0.744 0.246 7 0.482 4
Utah Jazz 53 0.60 0.749 0.248 6 0.348 9
Boston Celtics 50 0.48 0.493 0.243 12 0.447 6
Oklahoma City Thunder 50 0.54 0.565 0.242 10 0.268 11
Portland Trail Blazers 50 0.52 0.538 0.242 11 0.253 12
San Antonio Spurs 50 0.58 0.580 0.242 9 0.270 10
Miami Heat 47 0.51 0.307 0.239 13 0.070 14
Milwaukee Bucks 46 0.61 0.241 0.239 14 0.054 15
Charlotte Bobcats 44 0.70 0.155 0.239 15 0.019 16
Houston Rockets 42 0.55 0.140 0.237 16 0.080 13
Chicago Bulls 41 0.59 0.000 0.237 17 −0.065 20
Memphis Grizzlies 40 0.58 −0.011 0.237 18 0.019 17
Toronto Raptors 40 0.63 −0.074 0.240 19 0.017 18
New Orleans Hornets 37 0.65 −0.177 0.240 20 −0.037 19
Indiana Pacers 32 0.72 −0.544 0.246 21 −0.382 22
Los Angeles Clippers 29 0.72 −0.651 0.249 22 −0.300 21
New York Knicks 29 0.62 −0.749 0.250 23 −0.415 23
Detroit Pistons 27 0.63 −0.821 0.252 25 −0.446 25
Philadelphia 76ers 27 0.44 −0.830 0.253 26 −0.457 26
Golden State Warriors 26 0.69 −0.804 0.254 24 −0.586 28
Washington Wizards 26 0.58 −0.904 0.257 28 −0.494 27
Sacramento Kings 25 0.72 −0.888 0.258 27 −0.436 24
Minnesota Timberwolves 15 0.67 −1.616 0.302 29 −0.834 29
New Jersey Nets 12 0.67 −1.972 0.327 30 −1.119 30

†The table displays the number of matches won, the percentage of matches won played at home, % home, estim-
ated abilities, quasi-standard errors qse and ranks based on the static Bradley–Terry model, and estimated mean
abilities and ranks based on the dynamic Bradley–Terry model.

also the covariance between âk and âk′ . For example, if it is of interest to test whether the
ability of Cleveland is significantly higher than the ability of Orlando, the standard error of
the difference between the estimators can be approximated by using the quasi-variances simply
as .0:2672 + 0:2602/1=2 = 0:373. In this case, the abilities of the best two teams do not appear
statistically different.

2.2. Association football
The second application concerns the 2008–2009 Italian Serie A football league. This tourna-
ment comprises n = 20 teams with matches played between August 2008 and May 2009. The
tournament has a double-round-robin structure, so each team competes twice against all the
other teams in the league: once at home and once away. The total number of matches is thus
m=n.n− 1/= 380. These matches were played on 74 different days. As in the NBA example,
there are days with just one match and days with up to 10 matches played. The average number
of matches per day is 5.14.
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Table 2. 2008–2009 Italian Serie A football league†

Team pts % home Results for static model Results for
dynamic model

Ability qse Rank
Ability Rank

Internazionale 84 0.56 1.380 0.348 1 0.462 1
Juventus 74 0.53 0.928 0.324 2 0.303 2
Milan 74 0.61 0.913 0.326 3 0.294 3
Fiorentina 68 0.65 0.643 0.327 5 0.205 4
Genoa 68 0.60 0.693 0.314 4 0.177 5
Roma 63 0.68 0.422 0.310 6 0.108 6
Udinese 58 0.66 0.231 0.306 7 −0.007 11
Palermo 57 0.75 0.124 0.319 8 0.071 7
Cagliari 53 0.70 −0.010 0.315 9 0.004 10
Lazio 50 0.56 −0.233 0.329 12 0.028 8
Atalanta 47 0.70 −0.224 0.317 11 −0.009 12
Napoli 46 0.76 −0.259 0.307 13 0.009 9
Sampdoria 46 0.70 −0.177 0.295 10 −0.098 14
Siena 44 0.73 −0.425 0.312 15 −0.109 15
Catania 43 0.79 −0.409 0.319 14 −0.070 13
Chievo 38 0.45 −0.527 0.306 16 −0.243 16
Bologna 37 0.57 −0.627 0.315 17 −0.252 17
Torino 34 0.74 −0.760 0.316 18 −0.259 18
Reggina 31 0.58 −0.850 0.311 20 −0.337 20
Lecce 30 0.63 −0.833 0.303 19 −0.276 19

†The table displays final points pts, the percentage of points won at home, % home, estimated abilities ability,
quasi-standard errors qse and ranks based on the static Bradley–Terry model, and estimated mean abilities and
ranks based on the dynamic Bradley–Terry model.

The teams, ranked according to the final points order, are listed in Table 2. In the football
tournament, the winning team gains 3 points whereas the losing team receives nothing. If the
match is drawn, both teams gain 1 point. On average, 65% of the total points are gained in home
matches, with percentages ranging from 45% to 79%, and it is then evident that home advantage
of teams should be included in the model.

In contrast with basketball, football matches can also end in a draw; hence the random vari-
able Yi has three categories arbitrarily coded as 2 if the home team wins, 1 in the case of a draw
and 0 in the case of victory of the visiting team. Accordingly, model (1) is extended to account
for draws with a cumulative link specification (Agresti, 2002):

pr.Yi �yi/= exp.δyi +η +ahi −avi/

1+ exp.δyi +η +ahi −avi/
, yi ∈{0, 1, 2}, .2/

where −∞ < δ0 < δ1 < δ2 = ∞ are cut point parameters. Parameter identifiability is achieved
by imposing the ‘symmetrical’ constraints δ0 = −δ and δ1 = δ, with δ � 0. These constraints
are needed to ensure that two teams with the same ability playing on a neutral field (no home
advantage) have the same probability of winning the match. If Yi assumes only two possible
values, then the cumulative logit model (2) reduces to the standard Bradley–Terry model (1),
and δ becomes 0.

The fourth column of Table 2 shows the estimates of the abilities âk again with the sum con-
straint on team abilities. The estimates of the abilities range from −0.850 for Reggina to 1.380 for
Internazionale. The ranking that is derived from the estimated abilities is very similar to the final
points ranking, as the Kendall τ rank correlation is 0.94. The estimated home effect parameter is
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η̂=0:661 .0:105/ and the estimated cut point parameter is δ̂0 =−0:652 .0:061/. The fifth column
in Table 2 reports quasi-standard errors for teams’ abilities. In this case, if, for example, it is of
interest to test whether the ability of Internazionale is significantly higher than the ability of Ju-
ventus, the standard error of the difference can be computed as .0:3482 +0:3242/1=2 =0:475, so
there is no evidence in this model that they are statistically different even though Internazionale
ended the tournament 10 points ahead of Juventus.

In the above static models, parameters ak measure the overall abilities of the teams over a
complete season. However, team abilities are expected to change during the season because
of injuries to players, tiredness due to participation also in international competitions, team
psychology and other factors. In the next section we develop a dynamic version of the Bradley–
Terry model in which abilities are allowed to change and to depend on the past performance of
the team.

3. Dynamic Bradley–Terry model

3.1. The model
We model the match results with the following dynamic Bradley–Terry model:

pr.Yi �yi|Yi−1 =yi−1, . . . , Y1 =y1/= exp{δyi +ahi.ti/−avi.ti/}
1+ exp{δyi +ahi.ti/−avi.ti/}

, .3/

where ahi.ti/ describes the ability of the home team hi in match i played against the visiting
team vi at time ti. We specify an evolution of team ability in home matches which depends
only on past matches played at home, whereas the ability when playing away depends only on
past matches played as visitors. First, consider the ability in home matches and let t

.−1/
i be the

time of the match previous to match i in which hi was the home team. The ability of the home
team ahi.ti/ is assumed to evolve in time following the exponentially weighted moving average
(EWMA) process

ahi.ti/=λ1 μhi.ti/+ .1−λ1/ahi.t
.−1/
i /, .4/

for some home-specific smoothing parameter λ1 ∈ [0, 1]. The term μhi.ti/ denotes the mean home
ability of team hi based only on the result of the nearest previous match played at home by hi

μhi.ti/=β1 rhi.t
.−1/
i /, .5/

with β1 being a home-specific parameter and rhi.t
.−1/
i / a variable measuring the result of team

hi in the match played at time t
.−1/
i : In the NBA application, we specify rhi.t

.−1/
i / as the binary

variable equal to 1 if team hi won its previous home match and 0 if it was defeated. Thus, if j
denotes the nearest match previous to match i, which was played by hi at home, i.e. t

.−1/
i = tj,

then rhi.t
.−1/
i / = yj. Instead, in the Serie A application, we specify rhi.t

.−1/
i / as the number of

points earned by team hi at time t
.−1/
i of its previous home match: 3 points for a victory, 1 for

a draw and 0 for a loss.
The ability model (4) must be complemented by an initial condition. We assume that all teams

start with the same home ability equal to β1r̄h, where r̄h is an average of variables rhi.t/ over
the previous season. In the analysis of the NBA 2009–2010 season, r̄h is 0.608, the frequency
of victories at home during the NBA 2008–2009 regular season. In the analysis of the Serie A
2008–2009 data, r̄h is 1.676 points, which is the average number of points gained by home teams
during the Serie A 2007–2008 season.

Suppose that the home team hi has played K matches at home before the match played at
time ti. Then, by iterated back-substitution, the model based on the pair of equations (4)–(5)
can be reformulated as
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ahi.ti/=β1

{
λ1

K−1∑
k=0

.1−λ1/k rhi .t
.−k−1/
i /+ .1−λ1/Kr̄h

}
=β1xhi.ti;λ1/, .6/

with t
.−r/
i denoting the time of the rth previous match played at home by team hi. Thus, the ability

ahi.ti/ is a function of the entire past history of home matches, rhi.t
.−1/
i /, rhi.t

.−2/
i /, . . . , rhi.t

.−K/
i /.

The derived covariate xhi.ti;λ1/ is a weighted mean of these past results with weights λ1, λ1.1−
λ1/, . . . , λ1.1−λ1/K, geometrically decreasing to 0. The smoothing parameter λ1 specifies the
persistence of the dependence on previous home matches. In the limiting case λ1 =1, the home
team’s ability depends only on the previous home match, ahi.ti/ =β1 rhi.t

.−1/
i /: In contrast, if

λ1 =0 the home ability is constant in time and equal for all teams, ahi.ti/=β1r̄h =η. Values of
λ1 ∈ .0, 1/ specify different levels of smoothing. In particular, home abilities smoothed in time
are obtained when λ1 approaches 0.

Similarly, the ability of the visiting team is modelled by a second EWMA process

avi.ti/=λ2 μvi .ti/+ .1−λ2/avi.t
.−1/
i /,

where λ2 ∈ [0, 1] is the visitor-specific smoothing parameter and μvi .ti/=β2 rvi .t
.−1/
i / for a visi-

tor-specific coefficient β2: The starting values for r are computed similarly to those for the home
abilities. In the NBA 2009–2010 data r̄a is set equal to 0.392, which is the frequency of visitors’
victories during season 2008–2009, whereas in the Serie A 2008–2009 data r̄a = 1:029 points,
which is the average number of points gained by visitors in the Serie A 2007–2008 tournament.

Thus, in the proposed dynamic Bradley–Terry model, the EWMA specification is used to
account for the serial association between match results of the same team, with suitable differ-
ences between home and away matches.

3.2. Likelihood inference
EWMA processes are routinely used in time series forecasting (Holt, 2004) and in statistical
quality control charts (Montgomery, 2005). In these contexts, the smoothing parameter is often
chosen by trials or by using ad hoc methods based on previous experience. However, many have
argued that automatic, data-driven choices of the smoothing parameter would be preferable.
For example, in classical time series, the smoothing parameter ‘is often estimated by minimizing
the sum of squared one-step-ahead forecast errors’ (Chatfield (2000), page 98).

Here, we follow the recommendation to identify the smoothing parameters by using avail-
able observations and consider maximum profile likelihood estimation of the two smoothing
parameters λ1 and λ2.

Let γ = .β1, β2, δ/T be the vector of parameters of interest and let λ= .λ1, λ2/T be the vector
of nuisance smoothing parameters. Under the chosen order for the match results, the likelihood
function for θ= .γT, λT/T is written as

�.θ; y/=pr.Y1 =y1;θ/
n∏

i=2
pr.Yi =yi|Yi−1 =yi−1, . . . , Y1 =y1;θ/:

Given the home smoothing parameter λ1, the home ability can be written as ahi.ti/=β1xhi.ti;
λ1/, where xhi.ti;λ1/ is the weighted average of past home results rhi.t

.−k/
i / with weights λ1.1−

λ1/k−1; see formula (6). In parallel, given the visitors’ smoothing parameter λ2, the visitors’ abil-
ity is avi.ti/=β2 xvi.ti;λ2/ where xvi.ti;λ2/ has a specification that is analogous to the home case.
Accordingly, the conditional probability for the result of match i is expressed by the cumulative
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logit model

pr.Yi �yi|Yi−1 =yi−1, . . . , Y1 =y1;θ/= exp{δyi +β1xhi.ti;λ1/−β2 xvi.ti;λ2/}
1+ exp{δyi +β1xhi.ti;λ1/−β2 xvi.ti;λ2/} :

Thus, if the smoothing parameters are known, the likelihood function for the interest parame-
ter γ corresponds to that of a standard logistic regression model if draws are not allowed (e.g.
basketball) or that of a cumulative logistic regression model with constrained cut points in the
case of draws (e.g. football). The simplicity of computation of γ̂λ, the estimates of γ given λ,
suggests a two-step maximization of the likelihood. First, the smoothing parameter vector λ
is estimated by maximizing the profile likelihood �.γ̂λ, λ; y/, then γ is estimated as γ̂λ̂. This
approach is employed in the applications that are illustrated in Section 4.

3.3. Model validation
Model validation can be based on comparison of the fitted probabilites from the proposed
model with fitted probabilites from the unstructured model (2). The model proposed aims to
capture the evolution in time of all teams’ abilities with only four parameters (five in the case of
draws), whereas the unstructured model has n free parameters (n+1 when draws are allowed),
with n being the number of teams. Clearly, the unstructured model is expected to fit the data
better, and thus it may be viewed as a benchmark. The closer the fitted probabilities of the
model proposed are to those of the unstructured model, the better is the fit. To summarize the
fitted probabilities we consider the Brier score (Brier, 1950) which is defined for match i as

BSi =
Q−1∑
q=0

{pr.Yi =q |Yi−1 =yi−1, . . . , Y1 =y1; θ̂/−1.yi =q/}2
, i=1, . . . , m,

where 1.yi = q/ is the indicator function of the event {yi = q}, Q= 2 for sports without draws
and Q=3 when draws are allowed, and θ̂ is the maximum likelihood estimate of θ based on the
results of all the matches played, i.e. y1, . . . , ym. When the fit is perfect, giving probability 1 to
the observed outcome, the Brier score is equal to 0, whereas a completely erroneous fit produces
a Brier score equal to 2.

Some researchers have suggested that in the case of more than two categories it is better to
employ an index which accounts for the whole distribution of probabilities, such as the rank
probability score (Czado et al., 2009)

RPSi =
Q−1∑
q=0

{pr.Yi �q|Yi−1 =yi−1, . . . , Y1 =y1; θ̂/−1.yi �q/}2
:

In the analysis of sport tournaments the real interest usually lies in forecasting future results.
Hence, it may be more relevant to evaluate the fitted model from a predictive point of view. In
this case, we quantify the BSi and RPSi using the maximum likelihood estimate θ̂.i−1/ computed
only with matches played before the forecasted match i, i.e. only with results y1, . . . , yi−1.

4. Applications

4.1. Application to the National Basketball Association tournament
We fit the proposed model to the NBA 2009–2010 regular season. Fig. 1 shows the profile
log-likelihood for the smoothing parameters λ1 and λ2. This is maximized at λ̂1 = 0:043 and
λ̂2 =0:025. These two values are close to 0, thus supporting the effect also of remote match results
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Fig. 1. Contour plots of the profile log-likelihood for the smoothing parameters λ1 and λ2 for the NBA
2009–2010 season: (a) plot for all the range of values of λ1 and λ2; (b) zoom of the area of highest likelihood
(�, maximum likelihood estimate)

on the estimation of the present ability. The limiting model with one common home advantage
parameter and no evolution in time of abilities corresponds to λ1 =λ2 =0. This pair of values for
the smoothing parameters is strongly not supported by the data. In fact, the maximized profile
log-likelihood is −752:22 whereas the profile log-likelihood for λ1 =λ2 = 0 is much smaller, at
−830:56. The maximum likelihood estimates for the home and away coefficients computed at
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the estimated smoothing parameters are β̂1 = 5:503 and β̂2 = 7:379, with estimated standard
errors 0.465 and 0.699 respectively. Both estimates appear strongly significant.

To validate the fitted model, we compute the fitted Brier scores for each of the 1230 matches
both with the model proposed, which includes only four parameters, and with the unstructured
model involving 31 parameters. There is a high positive association between the Brier scores of
the two models; in fact their correlation is 0.784. The mean of the Brier scores for the fitted model
is 0.424, whereas for the unstructured model it is 0.379; thus the latter is 10.6% smaller in mean.
This result was expected given the larger number of parameters of the unstructured model.

However, it is more interesting to consider the appropriateness of the model proposed by
evaluation of its predictive performance. For this, we fit the model to the data coming from
half of the competition days, i.e. 82 days, then predict the results of the matches taking place
in the following day of competition, the 83rd, and compare them with the observed results by
the Brier score. Then, the model is refitted including also the matches in day 83 and used to
forecast results in day 84, and so on until the last day of matches (day 164). Following this
scheme we compute predictions for a total of 638 matches. Predictions from the unstructured
model are similarly computed. These predictions are also compared with those obtained by
simply using the empirical proportions of wins and losses of the home team computed on the
first half of the competition days. These fixed empirical proportions are employed to forecast
all the results of the second half of the tournament. Fig. 2(a) shows the boxplots of the Brier
scores computed for each forecasted match by using the unstructured model, the EWMA model
and the empirical proportions of wins and losses. Visual inspection of the boxplots shows Brier
scores of our model are very similar to those of the unstructured model whereas the Brier scores
of the empirical proportions are noticeably worse. Specifically, the mean predictive Brier score
for the proposed and the unstructured model are very close: 0.421 and 0.409 respectively. The
correlation between the two sets of Brier scores is 0.879. The overall conclusion is that the model
proposed is very competitive with the unstructured model from a predictive point of view. The
mean Brier score of empirical proportions is 0.497, so it is 15% larger than the score of the
model proposed. Furthermore, both the unstructured and the proposed models present Brier
scores which are lower than the Brier score of empirical proportions in 66% of the forecasts.

Fig. 3 shows the smoothed abilities for nine teams during the complete regular season. The
smoothed abilities are computed with parameters estimated from the complete tournament. For
each team there is a home and a visiting ability that are plotted in the same graph. The timescale
is the sequence of matches; at the end of the regular season each team has played 41 matches at
home and 41 away. Cleveland Cavaliers ended the season with the highest number of victories,
61, and, as expected, their ability in both home and away matches increases noticeably from
the starting mean ability that is common to all teams. It seems that Cleveland benefits from an
important home advantage effect; indeed it won 85% of the matches that it played at home and
63% of the matches played away. Also New Orleans Hornets show an important home effect
especially in the first half of the season. This team won 16 matches at home out of the first
20 matches whereas it succeeded only in five matches away out of the first 20. However, in the
second part of the season it showed no particular advantage in playing at home since it won
eight matches out of the last 21 both at home and away. New Jersey Nets was the team that per-
formed worst during the season. They won a total of 12 matches during the whole tournament
and performed poorly both at home and away. The increase in the visiting ability after match
30 is due to their winning three away matches in a row.

Finally, the seventh column in Table 1 reports the ranking that is derived from the proposed
model based on the average of the team abilities in each of the 82 days in which the team
played. The reported abilities are computed so as to sum to 0, by analogy with the unstructured
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Fig. 2. (a) Boxplots of the predictive Brier scores for the NBA data and (b) boxplots of rank probability
scores for the football data computed for the unstructured model, the EWMA model and the forecasts based
on empirical proportions

model. The Kendall rank correlation between the rankings of the unstructured and the pro-
posed model is 0.89. In this case we cannot report quasi-standard errors since the abilities are
not individual parameters as in the static Bradley–Terry model. Suppose that we are interested
in testing whether the ability of Cleveland Cavaliers is significantly higher than the ability of
Orlando Magic. The ability of the former team is 0.769 whereas the ability of the latter is 0.568,
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Fig. 3. Smoothed home ( ) and visiting (- - - - - - - ) abilities for nine teams for the NBA 2009–2010 sea-
son: (a) Cleveland Cavaliers, (b) Los Angeles Lakers; (c) Phoenix Suns; (d) Oklahoma City Thunder; (e) New
Orleans Hornets; (f) New York Knicks; (g) Washington Wizards; (h) Minnesota Timberwolves; (i) New Jersey
Nets

so their difference amounts to 0.201. This difference appears statistically significant since its
standard error is 0.018. This result is different from the result that is given by the unstructured
model because the model proposed has fewer parameters and thus the ability estimates are more
precise.

4.2. Application to the Serie A tournament
The second data set concerns the 2008–2009 Serie A football tournament which allows also
for ties. The profile log-likelihood is maximized at λ̂1 = 0:108 and λ̂2 = 0:078: again a pair of
values that are quite close to 0. The support for this model, in contrast with the static model
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resulting when λ1 =λ2 = 0, is given by the maximized profile log-likelihood which is equal to
−383.27, whereas it takes the value −393.68 in the model with smoothing parameters equal to
0. The maximum likelihood estimates for the coefficients computed at the estimated values of
the smoothing parameters are β̂1 = 0:925 and β̂2 = 1:031, with standard error 0.173 and 0.294
respectively, whereas the estimated cut point parameter is δ̂0 =−0:579 with standard error 0.054.

Since in football data there are three possible results, it is more appropriate to employ the
rank probability score to validate the model. The mean rank probability score for the whole
tournament, which comprises m = 380 matches, is 0.416 for the proposed model and 0.369 for
the unstructured model; hence the proposed model has a mean rank probability score which is
11.2% higher than that of the unstructured model. The correlation between rank probability
scores for the two models is 0.715.
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Fig. 4. Smoothed home ( ) and visiting (- - - - - - - ) abilities for nine teams for the 2008–2009 football
season data: (a) Internazionale; (b) Juventus; (c) Milan; (d) Roma; (e) Atalanta; (f) Siena; (g) Chievo; (h)
Reggina; (i) Lecce
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As for the NBA example, it is, however, more interesting to consider the predictive per-
formance of the model. To forecast the results we employ the same scheme as used for the
basketball data. The model is estimated by using the matches in the first half of the compe-
tition days (37 days) and the results of matches occurring in the 38th day of competitions
are predicted. Then we updated the model with the matches performed in day 38 and pre-
dict the following matches. The procedure is repeated until the end of the tournament with
a total of 198 matches predicted. The mean rank probability scores for the unstructured and
the EWMA model are essentially equal: 0.450 and 0.451 respectively. The correlation of the
RPSi in the two models is 0.762. Fig. 2(b) shows the boxplots of the rank probability scores
of the two models and the scores computed by using the empirical proportions of home wins,
draws and losses computed in the first 37 days. It is evident that the medians of the RPSi for
the unstructured and the EWMA models are equal; however, the EWMA model presents a
shorter box; thus with respect to the unstructured model it assigns higher probability to results
actually observed in fewer cases, but also it less often assigns higher probabilities to results that
do not occur. The mean RPSi of empirical proportions is 0.468, which is 4% larger than the
value for the EWMA model. Furthermore, the rank probability scores of the empirical pro-
portions are higher than the scores computed for the proposed model in 58% of the forecast
matches.

Fig. 4 shows the estimated abilities for nine of the teams which competed in the 2008–2009
Serie A league. Internazionale won the tournament, ending the season with 84 points, whereas
Juventus and Milan achieved second position, gaining 74 points each. The plots show that the
home performance of Internazionale is more stable during the season; in particular they never
lost a home match, whereas Juventus and Milan lost two home matches each. In general, teams
tend to perform better at home than away. This is particularly evident for Siena which won
nine matches and drew five matches out of the 19 home matches, whereas in the other 19 away
matches they won only three times and drew three matches.

The seventh column in Table 2 reports the mean abilities of football teams resulting from the
EWMA model. The Kendall rank correlation between the rankings derived from the unstruc-
tured and the proposed models is 0.86. In this case, the standard error needed to test whether
the teams Internazionale and Juventus have the same ability is 0.037. Since the estimated ability
of Internazionale is 0.462 and the estimated ability of Juventus is 0.303, yielding a difference
of 0.159, the two teams appear to have statistically different abilities whereas the unstructured
model led to the opposite conclusion.

5. Conclusions

We have described a dynamic paired comparison model for the results of matches in sport
tournaments. The model specification describes the temporal evolution of teams’ abilities by
separate EWMA processes for the home and away results. The two applications to basketball
and football tournaments show that the model proposed seems to capture the relevant aspects
of the evolution in time of team abilities, thus providing sensible forecasts if compared with the
unstructured model that fits one ability parameter for each team.

The model proposed uses only information about the final result of previous matches. It
seems reasonable that using more detailed information about previous matches may result in
more accurate data fitting and improved forecasts. The inclusion of additional information about
previous matches is easily handled under the model framework that is described in this paper;
for example one could substitute rhi.t

.−1/
i / and rvi .t

.−1/
i / with vectors rhi.t

.−1/
i / and rvi .t

.−1/
i /

and thus consider vector home and visitor parameters β1 and β2. With a possible large number
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of covariates from previous matches, it could be sensible to consider some form of shrinkage to
avoid overfitting, e.g. by a lasso penalty (Tibshirani, 1996) on parameters β1 and β2.

The model proposed requires starting values for the covariates. We considered equal values
for all teams, r̄h and r̄a, based on the results in the previous season. It is possible to consider
team-specific starting values, as for example the proportions of wins and losses at home for each
team in the previous season. The use of team-specific starting values for the NBA data leads to
somewhat different estimates of the model parameters, but the fitting and predictive qualities of
the resulting model, as evaluated by the Brier score, are almost identical to those of the model
with all equal starting values. This exercise seems not possible for the football data since the
teams in the Serie A league change season by season: at the end of the regular season the last
three teams in the league are demoted to the lower league and the three best teams of the lower
league are promoted to Serie A. Hence, the teams in the league are not the same in different
seasons and it seems inappropriate to use team-specific values computed for teams in different
leagues.

The issue of whether team-specific home advantages should be included in paired compar-
ison models has been considered by many researchers with contrasting conclusions. Knorr-
Held (1997) did not find much evidence of home advantage heterogeneity among teams in
the Bundesliga. Nor do the results in Harville and Smith (1994) show much difference in
home field advantages among college basketball teams. Analyses for some other contexts do,
however, support heterogeneity in home advantages; see Clarke and Norman (1995), Kuk
(1995) and Glickman and Stern (1998) for different analyses of the English Premier Foot-
ball League. The model that is proposed in this paper can be seen as a convenient way to
induce home abilities which vary between teams and in time depending on past performances
of teams.

We considered sports with matches that may end with two or three different results. There are
other competitions where more than three levels of results are possible. An example is volleyball
where points are assigned as follows: if a match ends 3–0 or 3–1 the winning team gains 3 points
and the losing team remains empty handed, whereas, if the match ends 3–2, the winning team
gains 2 points and the losing team is awarded 1 point. As suggested by a referee, the analysis
of volleyball matches would require a categorical variable Yi with four ordered levels. There is
no special difficulty in extending our modelling framework to this case. More generally, assume
that Yi is a categorical variable that may assume Q different categories where Q−1 denotes the
best result achievable for the home team and 0 denotes the best result for the visiting team. The
cumulative logit model (2) is easily extended to handle Q levels

pr.Yi �yi/= exp{δyi +ahi.ti/−avi.ti/}
1+ exp{δyi +ahi.ti/−avi.ti/}

, yi ∈{0, 1, . . . , Q−1}, .7/

where −∞ < δ0 < . . . < δQ−1 =∞ are cut point parameters. To preserve model identifiability,
the symmetrical constraint now becomes δq =−δQ−2−q, q=0, . . . , Q−1, and δQ=2−1 =0 when
Q is even.
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