75 research outputs found

    Recency Effects in the Inferior Parietal Lobe during Verbal Recognition Memory

    Get PDF
    The most recently encountered information is often most easily remembered in psychological tests of memory. Recent investigations of the neural basis of such “recency effects” have shown that activation in the lateral inferior parietal cortex (LIPC) tracks the recency of a probe item when subjects make recognition memory judgments. A key question regarding recency effects in the LIPC is whether they fundamentally reflect the storage (and strength) of information in memory, or whether such effects are a consequence of task difficulty or an upswing in resting state network activity. Using functional magnetic resonance imaging we show that recency effects in the LIPC are independent of the difficulty of recognition memory decisions, that they are not a by-product of an increase in resting state network activity, and that they appear to dissociate from regions known to be involved in verbal working memory maintenance. We conclude with a discussion of two alternative explanations – the memory strength and “expectancy” hypotheses, respectively – of the parietal lobe recency effect

    Repetition Suppression and Reactivation in Auditory–Verbal Short-Term Recognition Memory

    Get PDF
    The neural response to stimulus repetition is not uniform across brain regions, stimulus modalities, or task contexts. For instance, it has been observed in many functional magnetic resonance imaging (fMRI) studies that sometimes stimulus repetition leads to a relative reduction in neural activity (repetition suppression), whereas in other cases repetition results in a relative increase in activity (repetition enhancement). In the present study, we hypothesized that in the context of a verbal short-term recognition memory task, repetition-related “increases” should be observed in the same posterior temporal regions that have been previously associated with “persistent activity” in working memory rehearsal paradigms. We used fMRI and a continuous recognition memory paradigm with short lags to examine repetition effects in the posterior and anterior regions of the superior temporal cortex. Results showed that, consistent with our hypothesis, the 2 posterior temporal regions consistently associated with working memory maintenance, also show repetition increases during short-term recognition memory. In contrast, a region in the anterior superior temporal lobe showed repetition suppression effects, consistent with previous research work on perceptual adaptation in the auditory–verbal domain. We interpret these results in light of recent theories of the functional specialization along the anterior and posterior axes of the superior temporal lobe

    The effect of rehearsal rate and memory load on verbal working memory

    No full text
    While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory load in a verbal WM task with long 45-s delay periods. We found that middle frontal gyrus (MFG) and superior parietal lobule (SPL) exhibited memory load effects primarily early in the delay period and did not exhibit rehearsal rate effects. In contrast, we found that inferior frontal gyrus (IFG), premotor cortex (PM) and Sylvian-parietal-temporal region (area Spt) exhibited approximately linear memory load and rehearsal rate effects, with rehearsal rate effects lasting through the entire delay period. These results indicate that IFG, PM and area Spt comprise the core articulatory rehearsal areas involved in verbal WM, while MFG and SPL are recruited in a general supervisory role once a memory load threshold in the core rehearsal network has been exceeded

    Deformation-Based Morphometry and Its Relation to Conventional Volumetry of Brain Lateral Ventricles in MRI

    No full text
    Deformation-based morphometry (DBM) is a useful technique to detect morphological differences over the entire brain since it analyses positional differences between every voxel and a standard brain. In this report we compare DBM to semimanual tracing of brain ventricles in a population of 39 patients with schizophrenia. High-resolution T 1-weighted magnetic resonance images were obtained and processed with DBM and interactive tracing software. We evaluate the validity of the DBM in two different approaches. First, we divide subjects into two groups based on the mean ventricular/brain ratios and compute statistical maps of displacement vectors and their spatial derivatives. This analysis demonstrates a striking consistency of the DBM and visual tracing results. We show that restricting the information about the deformation fields by computing the local Jacobian determinant (as a measure of volume change) provides evidence of the shape of ventricular deformation which is unavailable from ventricular volume measures alone. Second, we compute a mean measure of the Jacobian values over the entire ventricles and observe a correlation of r � 0.962 with visual tracing based ventricular/brain ratios. The results support the usefulness and validity of DBM for the local and global examination of brain morphology

    Positive Association between Cerebral Grey Matter Metabolism and Dopamine D2/D3 Receptor Availability in Healthy and Schizophrenia Subjects: An \u3csup\u3e18\u3c/sup\u3eF-fluorodeoxyglucose and \u3csup\u3e18\u3c/sup\u3eF-fallypride Positron Emission Tomography Study

    No full text
    Objectives: Overlapping decreases in extrastriatal dopamine D2/D3-receptor availability and glucose metabolism have been reported in subjects with schizophrenia. It remains unknown whether these findings are physiologically related or coincidental. Methods: To ascertain this, we used two consecutive 18F-fluorodeoxyglucose and 18F-fallypride positron emission tomography scans in 19 healthy and 25 unmedicated schizophrenia subjects. Matrices of correlations between 18F-fluorodeoxyglucose uptake and 18F-fallypride binding in voxels at the same xyz location and AFNI-generated regions of interest were evaluated in both diagnostic groups. Results: 18F-fluorodeoxyglucose uptake and 18F-fallypride binding potential were predominantly positively correlated across the striatal and extrastriatal grey matter in both healthy and schizophrenia subjects. In comparison to healthy subjects, significantly weaker correlations in subjects with schizophrenia were confirmed in the right cingulate gyrus and thalamus, including the mediodorsal, lateral dorsal, anterior, and midline nuclei. Schizophrenia subjects showed decreased D2/D3-receptor availability in the hypothalamus, mamillary bodies, thalamus and several thalamic nuclei, and increased glucose uptake in three lobules of the cerebellar vermis. Conclusions: Dopaminergic system may be involved in modulation of grey matter metabolism and neurometabolic coupling in both healthy human brain and psychopathology. Hyperdopaminergic state in untreated schizophrenia may at least partly account for the corresponding decreases in grey matter metabolism

    Dopamine Receptor Density and White Mater Integrity: \u3csup\u3e18\u3c/sup\u3eF-fallypride Positron Emission Tomography and Diffusion Tensor Imaging Study in Healthy and Schizophrenia subjects

    No full text
    Dopaminergic dysfunction and changes in white matter integrity are among the most replicated findings in schizophrenia. A modulating role of dopamine in myelin formation has been proposed in animal models and healthy human brain, but has not yet been systematically explored in schizophrenia. We used diffusion tensor imaging and 18F-fallypride positron emission tomography in 19 healthy and 25 schizophrenia subjects to assess the relationship between gray matter dopamine D2/D3 receptor density and white matter fractional anisotropy in each diagnostic group. AFNI regions of interest were acquired for 42 cortical Brodmann areas and subcortical gray matter structures as well as stereotaxically placed in representative white matter areas implicated in schizophrenia neuroimaging literature. Welch’s t-test with permutation-based p value adjustment was used to compare means of z-transformed correlations between fractional anisotropy and 18F-fallypride binding potentials in hypothesis-driven regions of interest in the diagnostic groups. Healthy subjects displayed an extensive pattern of predominantly negative correlations between 18F-fallypride binding across a range of cortical and subcortical gray matter regions and fractional anisotropy in rostral white matter regions (internal capsule, frontal lobe, anterior corpus callosum). These patterns were disrupted in subjects with schizophrenia, who displayed significantly weaker overall correlations as well as comparatively scant numbers of significant correlations with the internal capsule and frontal (but not temporal) white matter, especially for dopamine receptor density in thalamic nuclei. Dopamine D2/D3 receptor density and white matter integrity appear to be interrelated, and their decreases in schizophrenia may stem from hyperdopaminergia with dysregulation of dopaminergic impact on axonal myelination
    corecore