232 research outputs found

    Patterns of depredation in the Hawai‘i deep-set longline fishery informed by fishery and false killer whale behavior

    Get PDF
    False killer whales (Pseudorca crassidens) depredate bait and catch in the Hawai‘i-based deep-set longline fishery, and as a result, this species is hooked or entangled more than any other cetacean in this fishery. We analyzed data collected by fisheries observers and from satellite-linked transmitters deployed on false killer whales to identify patterns of odontocete depredation that could help fishermen avoid overlap with whales. Odontocete depredation was observed on ˜6% of deep-set hauls across the fleet from 2004 to 2018. Model outcomes from binomial GAMMs suggested coarse patterns, for example, higher rates of depredation in winter, at lower latitudes, and with higher fishing effort. However, explanatory power was low, and no covariates were identified that could be used in a predictive context. The best indicator of depredation was the occurrence of depredation on a previous set of the same vessel. We identified spatiotemporal scales of this repeat depredation to provide guidance to fishermen on how far to move or how long to wait to reduce the probability of repeated interactions. The risk of depredation decreased with both space and time from a previous occurrence, with the greatest benefits achieved by moving ˜400 km or waiting ˜9 d, which reduced the occurrence of depredation from 18% to 9% (a 50% reduction). Fishermen moved a median 46 km and waited 4.7 h following an observed depredation interaction, which our analysis suggests is unlikely to lead to large reductions in risk. Satellite-tagged pelagic false killer whales moved up to 75 km in 4 h and 335 km in 24 h, suggesting that they can likely keep pace with longline vessels for at least four hours and likely longer. We recommend fishermen avoid areas of known depredation or bycatch by moving as far and as quickly as practical, especially within a day or two of the depredation or bycatch event. We also encourage captains to communicate depredation and bycatch occurrence to enable other vessels to similarly avoid high-risk areas

    Survival Estimates of Western Gray Whales \u3ci\u3eEschrichtius robustus\u3c/i\u3e Incorporating Individual Heterogeneity and Temporary Emigration

    Get PDF
    Gray whales Eschrichtius robustus exist as a 2 geographically and genetically distinct populations in the eastern and western North Pacific. Subjected to intensive commercial whaling during the 19th and 20th centuries, the western population presently numbers approximately 100 individuals and is regarded as one of the most endangered baleen whale populations in the world

    Survival Estimates of Western Gray Whales \u3ci\u3eEschrichtius robustus\u3c/i\u3e Incorporating Individual Heterogeneity and Temporary Emigration

    Get PDF
    Gray whales Eschrichtius robustus exist as a 2 geographically and genetically distinct populations in the eastern and western North Pacific. Subjected to intensive commercial whaling during the 19th and 20th centuries, the western population presently numbers approximately 100 individuals and is regarded as one of the most endangered baleen whale populations in the world

    Quantifying the age structure of free-ranging delphinid populations : testing the accuracy of Unoccupied Aerial System photogrammetry

    Get PDF
    This study was funded by NOAA-PIFSC and RCUH JIMAR (NA19NMF4720181, NA16NMF4320058), CIMAR (NA21NMF4320043), and the Office of Naval Research (N000142012624).Understanding the population health status of long-lived and slow-reproducing species is critical for their management. However, it can take decades with traditional monitoring techniques to detect population-level changes in demographic parameters. Early detection of the effects of environmental and anthropogenic stressors on vital rates would aid in forecasting changes in population dynamics and therefore inform management efforts. Changes in vital rates strongly correlate with deviations in population growth, highlighting the need for novel approaches that can provide early warning signs of population decline (e.g., changes in age structure). We tested a novel and frequentist approach, using Unoccupied Aerial System (UAS) photogrammetry, to assess the population age structure of small delphinids. First, we measured the precision and accuracy of UAS photogrammetry in estimating total body length (TL) of trained bottlenose dolphins (Tursiops truncatus). Using a log-transformed linear model, we estimated TL using the blowhole to dorsal fin distance (BHDF) for surfacing animals. To test the performance of UAS photogrammetry to age-classify individuals, we then used length measurements from a 35-year dataset from a free-ranging bottlenose dolphin community to simulate UAS estimates of BHDF and TL. We tested five age classifiers and determined where young individuals (Publisher PDFPeer reviewe

    Time course investigation of PPARα- and Kupffer cell-dependent effects of WY-14,643 in mouse liver using microarray gene expression

    Get PDF
    Administration of peroxisome proliferators to rodents causes proliferation of peroxisomes, induction of β-oxidation enzymes, hepatocelluar hypertrophy and hyperplasia, with chronic exposure ultimately leading to hepatocellular carcinomas. Many responses associated with peroxisome proliferators are nuclear receptor-mediated events involving peroxisome proliferators-activated receptor alpha (PPARα). A role for nuclear receptor-independent events has also been shown, with evidence of Kupffer cell-mediated free radical production, presumably through NAPDH oxidase, induction of redox-sensitive transcription factors involved in cytokine production and cytokine-mediated cell replication following acute treatment with peroxisome proliferators in rodents. Recent studies have demonstrated, by using p47phox-null mice which are deficient in NADPH oxidase, that this enzyme is not related to the phenotypic events caused by prolonged administration of peroxisome proliferators. In an effort to determine the timing of the transition from Kupffer cell- to PPARα-dependent modulation of peroxisome proliferator effects, gene expression was assessed in liver from Pparα-null, p47phox-null and corresponding wild-type mice following treatment with 4-chloro-6-(2,3-xylidino)-pyrimidynylthioacetic acid (WY-14,643) for 8 h, 24 h, 72 h, 1 wk, or 4 wks. WY-14,643-induced gene expression in p47phox-null mouse liver differed substantially from wild-type mice at acute doses and striking differences in baseline expression of immune related genes were evident. Pathway mapping of genes that respond to WY-14,643 in a time- and dose-dependent manner demonstrates suppression of immune response, cell death and signal transduction and promotion of lipid metabolism, cell cycle and DNA repair. Furthermore, these pathways were largely dependent on PPARα, not NADPH oxidase demonstrating a temporal shift in response to peroxisome proliferators. Overall, this study shows that NADPH oxidase-dependent events, while detectable following acute treatment, are transient and short-lived. To the contrary, a strong PPARα-specific gene signature was evident in mice that were continually exposed to WY-14,643

    Sustained formation of POBN radical adducts in mouse liver by peroxisome proliferators is dependent upon PPARα, but not NADPH oxidase

    Get PDF
    Reactive oxygen species are thought to be crucial for peroxisome proliferator-induced liver carcinogenesis. Free radicals have been shown to mediate the production of mitogenic cytokines by Kupffer cells and cause DNA damage in rodent liver. Previous in vivo experiments demonstrated that acute administration of the peroxisome proliferator di-(2-ethylhexyl) phthalate (DEHP) led to an increase in production of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) radical adducts in liver, an event that was dependent on Kupffer cell NADPH oxidase, but not peroxisome proliferator activated receptor (PPAR)α. Here, we hypothesized that continuous treatment with peroxisome proliferators will cause a sustained formation in POBN radical adducts in liver. Mice were fed diets containing either 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio acetic acid (WY-14,643, 0.05% w/w), or DEHP (0.6% w/w) for up to three weeks. Liver-derived radical production was assessed in bile samples by measuring POBN-radical adducts using electron spin resonance. Our data indicate that WY-14,643 causes a sustained increase in POBN radical adducts in mouse liver and that this effect is greater than that of DEHP. To understand the molecular source of these radical species, NADPH oxidase-deficient (p47 phox-null) and PPARα-null mice were examined after treatment with WY-14,643. No increase in radicals was observed in PPARα-null mice that were treated with WY-14,643 for 3 weeks, while the response in p47 phox-nulls was similar to that of wild-type mice. These results show that PPARα, not NADPH oxidase, is critical for a sustained increase in POBN radical production caused by peroxisome proliferators in rodent liver. Therefore, peroxisome proliferator-induced POBN radical production in Kupffer cells may be limited to an acute response to these compounds in mouse liver

    Biologically Important Areas II for cetaceans within U.S. and adjacent waters – Hawaiʻi Region

    Get PDF
    In this assessment we incorporated published and unpublished information to delineate and score Biologically Important Areas (BIAs) for cetaceans in the Hawaiʻi region following standardized criteria. Twenty-six cetacean species have been documented in Hawaiʻi. Eleven odontocete species have distinct small populations resident to one or more island areas: rough-toothed dolphins, pantropical spotted dolphins, common bottlenose dolphins, spinner dolphins, short-finned pilot whales, false killer whales, pygmy killer whales, melon-headed whales, Blainville’s beaked whales, Cuvier’s beaked whales, and dwarf sperm whales. Eight species of mysticetes have been documented, although their occurrence and behavior are poorly understood, with the exception of breeding humpback whales and, more recently, common minke whales. Thirty-five BIAs were delineated or revised from the initial 2015 effort: 33 for small and resident odontocete populations and two for humpback whale reproductive areas. Hierarchical BIAs reflecting core areas of use or population-specific ranges were delineated for nine species. Reproductive watch list areas were designated for common minke whales in the main Hawaiian Islands (MHI) and humpback whales in the Northwestern Hawaiian Islands (NWHI); these areas did not meet the criteria for a BIA due to limited supporting information. All but three BIAs were in the MHI, reflecting the disparities in research effort between this region and the NWHI. Spatial extents of BIA boundaries ranged from 457 km2 to 138,001 km2 (median = 8,299 km2). Scores (range: 1-3) for Data Support and Boundary Certainty were moderate to high (mean = 2.40 and 2.43, respectively), while Intensity and Importance scores were slightly lower (mean = 1.94 and 1.89, respectively). Many of the Hawaiʻi species have been extensively studied over several decades; accordingly, this region ranks among the highest in terms of Data Support relative to other regions. BIAs presented here describe known ranges of small resident populations, intensities of use, and uncertainties in important areas for cetaceans in Hawaiʻi based on the best available data, and have also revealed knowledge gaps to guide future research efforts

    Evidence of a small, island-associated population of common bottlenose dolphins in the Mariana Islands

    Get PDF
    Small, island-associated populations of cetaceans have evolved around numerous oceanic islands, likely due to habitat discontinuities between nearshore and offshore waters. However, little is known about the ecology and structure of cetacean populations around the Mariana Islands, a remote archipelago in the western Pacific Ocean. We present sighting, photo-identification, and genetic data collected during twelve years of surveys around these islands that reveal the existence of a small, island-associated population of bottlenose dolphins. Nearly half of the photo-identified individuals were encountered in more than one year. Both haplotypic and nuclear genetic diversity among sampled individuals was low (haplotypic diversity = 0.701, nuclear heterozygosity = 0.658), suggesting low abundance. We used mark-recapture analysis of photo-identification data to estimate yearly abundance in the southern portion of the population’s range from 2011 to 2018. Each abundance estimate was less than 54 individuals, with each upper 95% confidence interval below 100. Additional survey effort is necessary to generate a full population abundance estimate. We found extensive introgression of Fraser’s dolphin DNA into both the mitochondrial and nuclear genomes of the population, suggesting at least two hybridization events more than two generations in the past. The Mariana Islands are used extensively by the U.S. military for land and sea training operations. Thus, this unique bottlenose dolphin population likely faces high exposure to multiple threats
    corecore