429 research outputs found

    Accurate description of bulk and interfacial properties in colloid-polymer mixtures

    Full text link
    Large-scale Monte Carlo simulations of a phase-separating colloid-polymer mixture are performed and compared to recent experiments. The approach is based on effective interaction potentials in which the central monomers of self-avoiding polymer chains are used as effective coordinates. By incorporating polymer nonideality together with soft colloid-polymer repulsion, the predicted binodal is in excellent agreement with recent experiments. In addition, the interfacial tension as well as the capillary length are in quantitative agreement with experimental results obtained at a number of points in the phase-coexistence region, without the use of any fit parametersComment: 4 pages, 4 figure

    Simulation and theory of fluid demixing and interfacial tension of mixtures of colloids and non-ideal polymers

    Full text link
    An extension of the Asakura-Oosawa-Vrij model of hard sphere colloids and non-adsorbing polymers, that takes polymer non-ideality into account through a repulsive stepfunction pair potential between polymers, is studied with grand canonical Monte Carlo simulations and density functional theory. Simulation results validate previous theoretical findings for the shift of the bulk fluid demixing binodal upon increasing strength of polymer-polymer repulsion, promoting the tendency to mix. For increasing strength of the polymer-polymer repulsion, simulation and theory consistently predict the interfacial tension of the free colloidal liquid-gas interface to decrease significantly for fixed colloid density difference in the coexisting phases, and to increase for fixed polymer reservoir packing fraction.Comment: 10 pages, 4 figure

    Wall-Fluid and Liquid-Gas Interfaces of Model Colloid-Polymer Mixtures by Simulation and Theory

    Full text link
    We perform a study of the interfacial properties of a model suspension of hard sphere colloids with diameter σc\sigma_c and non-adsorbing ideal polymer coils with diameter σp\sigma_p. For the mixture in contact with a planar hard wall, we obtain from simulations the wall-fluid interfacial free energy, γwf\gamma_{wf}, for size ratios q=σp/σc=0.6q=\sigma_p/\sigma_c=0.6 and 1, using thermodynamic integration, and study the (excess) adsorption of colloids, Γc\Gamma_c, and of polymers, Γp\Gamma_p, at the hard wall. The interfacial tension of the free liquid-gas interface, γlg\gamma_{lg}, is obtained following three different routes in simulations: i) from studying the system size dependence of the interfacial width according to the predictions of capillary wave theory, ii) from the probability distribution of the colloid density at coexistence in the grand canonical ensemble, and iii) for statepoints where the colloidal liquid wets the wall completely, from Young's equation relating γlg\gamma_{lg} to the difference of wall-liquid and wall-gas interfacial tensions, γwlγwg\gamma_{wl}-\gamma_{wg}. In addition, we calculate γwf,Γc\gamma_{wf}, \Gamma_c, and Γp\Gamma_p using density functional theory and a scaled particle theory based on free volume theory. Good agreement is found between the simulation results and those from density functional theory, while the results from scaled particle theory quantitatively deviate but reproduce some essential features. Simulation results for γlg\gamma_{lg} obtained from the three different routes are all in good agreement. Density functional theory predicts γlg\gamma_{lg} with good accuracy for high polymer reservoir packing fractions, but yields deviations from the simulation results close to the critical point.Comment: 23 pages, 10 figures, REVTEX. Fig 5a changed. Final versio

    Critical phenomena in colloid-polymer mixtures: interfacial tension, order parameter, susceptibility and coexistence diameter

    Full text link
    The critical behavior of a model colloid-polymer mixture, the so-called AO model, is studied using computer simulations and finite size scaling techniques. Investigated are the interfacial tension, the order parameter, the susceptibility and the coexistence diameter. Our results clearly show that the interfacial tension vanishes at the critical point with exponent 2\nu ~ 1.26. This is in good agreement with the 3D Ising exponent. Also calculated are critical amplitude ratios, which are shown to be compatible with the corresponding 3D Ising values. We additionally identify a number of subtleties that are encountered when finite size scaling is applied to the AO model. In particular, we find that the finite size extrapolation of the interfacial tension is most consistent when logarithmic size dependences are ignored. This finding is in agreement with the work of Berg et al.[Phys. Rev. B, V47 P497 (1993)]Comment: 13 pages, 16 figure

    As a Matter of Factions: The Budgetary Implications of Shifting Factional Control in Japan’s LDP

    Get PDF
    For 38 years, the Liberal Democratic Party (LDP) maintained single-party control over the Japanese government. This lack of partisan turnover in government has frustrated attempts to explain Japanese government policy changes using political variables. In this paper, we look for intraparty changes that may have led to changes in Japanese budgetary policy. Using a simple model of agenda-setting, we hypothesize that changes in which intraparty factions “control” the LDP affect the party’s decisions over spending priorities systematically. This runs contrary to the received wisdom in the voluminous literature on LDP factions, which asserts that factions, whatever their raison d’être, do not exhibit different policy preferences. We find that strong correlations do exist between which factions comprise the agenda-setting party “mainstream” and how the government allocates spending across pork-barrel and public goods items

    Phase behavior and structure of model colloid-polymer mixtures confined between two parallel planar walls

    Full text link
    Using Gibbs ensemble Monte Carlo simulations and density functional theory we investigate the fluid-fluid demixing transition in inhomogeneous colloid-polymer mixtures confined between two parallel plates with separation distances between one and ten colloid diameters covering the complete range from quasi two-dimensional to bulk-like behavior. We use the Asakura-Oosawa-Vrij model in which colloid-colloid and colloid-polymer interactions are hard-sphere like, whilst the pair potential between polymers vanishes. Two different types of confinement induced by a pair of parallel walls are considered, namely either through two hard walls or through two semi-permeable walls that repel colloids but allow polymers to freely penetrate. For hard (semi-permeable) walls we find that the capillary binodal is shifted towards higher (lower) polymer fugacities and lower (higher) colloid fugacities as compared to the bulk binodal; this implies capillary condensation (evaporation) of the colloidal liquid phase in the slit. A macroscopic treatment is provided by a novel symmetric Kelvin equation for general binary mixtures, based on the proximity in chemical potentials of statepoints at capillary coexistence and the reference bulk coexistence. Results for capillary binodals compare well with those obtained from the classic version of the Kelvin equation due to Evans and Marini Bettolo Marconi [J. Chem. Phys. 86, 7138 (1987)], and are quantitatively accurate away from the fluid-fluid critical point, even at small wall separations. For hard walls the density profiles of polymers and colloids inside the slit display oscillations due to packing effects for all statepoints. For semi-permeable walls either similar structuring or flat profiles are found, depending on the statepoint considered.Comment: 15 pages, 13 figure

    Critical behavior in colloid-polymer mixtures: theory and simulation

    Full text link
    We extensively investigated the critical behavior of mixtures of colloids and polymers via the two-component Asakura-Oosawa model and its reduction to a one-component colloidal fluid using accurate theoretical and simulation techniques. In particular the theoretical approach, hierarchical reference theory [Adv. Phys. 44, 211 (1995)], incorporates realistically the effects of long-range fluctuations on phase separation giving exponents which differ strongly from their mean-field values, and are in good agreement with those of the three-dimensional Ising model. Computer simulations combined with finite-size scaling analysis confirm the Ising universality and the accuracy of the theory, although some discrepancy in the location of the critical point between one-component and full-mixture description remains. To assess the limit of the pair-interaction description, we compare one-component and two-component results.Comment: 15 pages, 10 figures. Submitted to Phys. Rev.

    Rosenfeld functional for non-additive hard spheres

    Full text link
    The fundamental measure density functional theory for hard spheres is generalized to binary mixtures of arbitrary positive and moderate negative non-additivity between unlike components. In bulk the theory predicts fluid-fluid phase separation into phases with different chemical compositions. The location of the accompanying critical point agrees well with previous results from simulations over a broad range of non-additivities and both for symmetric and highly asymmetric size ratios. Results for partial pair correlation functions show good agreement with simulation data.Comment: 8 pages with 4 figure

    Capillary Condensation and Interface Structure of a Model Colloid-Polymer Mixture in a Porous Medium

    Full text link
    We consider the Asakura-Oosawa model of hard sphere colloids and ideal polymers in contact with a porous matrix modeled by immobilized configurations of hard spheres. For this ternary mixture a fundamental measure density functional theory is employed, where the matrix particles are quenched and the colloids and polymers are annealed, i.e. allowed to equilibrate. We study capillary condensation of the mixture in a tiny sample of matrix as well as demixing and the fluid-fluid interface inside a bulk matrix. Density profiles normal to the interface and surface tensions are calculated and compared to the case without matrix. Two kinds of matrices are considered: (i) colloid-sized matrix particles at low packing fractions and (ii) large matrix particles at high packing fractions. These two cases show fundamentally different behavior and should both be experimentally realizable. Furthermore, we argue that capillary condensation of a colloidal suspension could be experimentally accessible. We find that in case (ii), even at high packing fractions, the main effect of the matrix is to exclude volume and, to high accuracy, the results can be mapped onto those of the same system without matrix via a simple rescaling.Comment: 12 pages, 9 figures, submitted to PR

    Structure and phase equilibria of the Widom-Rowlinson model

    Full text link
    The Widom-Rowlinson model plays an important role in the statistical mechanics of second order phase transitions and yet there currently exists no theoretical approach capable of accurately predicting both the microscopic structure and phase equilibria. We address this issue using computer simulation, density functional theory and integral equation theory. A detailed study of the pair correlation functions obtained from computer simulation motivates a closure of the Ornstein-Zernike equations which gives a good description of the pair structure and locates the critical point to an accuracy of 2 percent
    corecore