553 research outputs found

    A categorial study of initiality in uniform topology

    Get PDF
    This thesis consists of two chapters, of which the first presents a categorial study of the concept of initiality (also known as projective generation) and the second gives applications in the theory of uniform and quasi-uniform spaces

    Sobrification and bicompletion of totally bounded quasi-uniform spaces

    Get PDF
    We observe that if is a compatible totally bounded quasi-uniformity on a T0-space (X,), then the bicompletion of (X, ) is a strongly sober, locally quasicompact space. It follows that the b-closure S of (X, ) in is homeomorphic to the sobrification of the space (X, ). We prove that S is equal to if and only if (X, ) is a core-compact space in which every ultrafilter has an irreducible convergence set and is the coarsest quasi-uniformity compatible with . If is the Pervin quasi-uniformity on X, then S is equal to if and only if X is hereditarily quasicompact, or equivalently, is the Pervin quasi-uniformity o

    The effect of unsteady and baroclinic forcing on predicted wind profiles in Large Eddy Simulations: Two case studies of the daytime atmospheric boundary layer

    Get PDF
    Due to its fine-resolution requirement and subsequent computational demand, Large Eddy Simulation of the atmospheric boundary layer is limited in most cases to computational domains extending only a few kilometers in both the vertical and horizontal directions. Variations in the flow and in relevant atmospheric fields (e.g. temperature) that occur at larger scales must be imposed through boundary conditions or as external forcing. In this work we study the influence of such variations on the wind profile in Large Eddy Simulations of daytime atmospheric boundary layers, by comparing observations with simulations that use progressively more realistic forcing relative to observed large-scale pressure gradients.Two case studies are presented. One is based on measurements from the rural site of Høvsøre in Denmark, and the other on measurements from a suburban site in Hamburg, Germany. The applied domain-scale pressure gradient and its height- and time-dependence are estimated from LIDAR measurements of the wind speed above the atmospheric boundary layer in the Høvsøre case, and from radio soundings and a network of ground-based pressure sensors in the Hamburg case.In the two case studies, LIDAR measurements of the wind speed up to heights between 900 and 1600 m and tower-based measurements up to 100 and 250 m are used to evaluate the performance of the variably-driven Large Eddy Simulations. We find in both case studies that including height- and time-variations in the applied pressure gradient has a significant influence on simulated wind speeds, and improves agreement with measured wind speeds, especially in the Høvsøre case. In the Hamburg case, an overly simplified specification of the height dependence of the forcing, as well as the influence of phenomena such as large-scale subsidence and advection, tend to reduce agreement with measurements, relative to the Høvsøre case. The Hamburg case illustrates that measurements of the surface pressure gradient and relatively infrequent radio soundings alone are not sufficient for accurate estimation of a height- and time-dependent pressure gradient

    A natural renormalizable model of metastable SUSY breaking

    Full text link
    We propose a model of metastable dynamical supersymmetry breaking in which all scales are generated dynamically. Our construction is a simple variant of the Intriligator-Seiberg-Shih model, with quark masses induced by renormalizable couplings to an auxiliary supersymmetric QCD sector. Since all scales arise from dimensional transmutation, the model has no fundamental dimensionful parameters. It also does not rely on higher-dimensional operators.Comment: 9 pages; v2: typos correcte

    On SUSY GUTs with a degenerate Higgs mass matrix

    Get PDF
    Certain supersymmetric grand unified models predict that the coefficients of the quadratic terms in the MSSM Higgs potential should be degenerate at the GUT scale. We discuss some examples for such models, and we analyse the implications of this peculiar condition of a GUT-scale degenerate Higgs mass matrix for low-scale MSSM phenomenology. To this end we explore the parameter space which is consistent with existing experimental constraints by means of a Markov Chain Monte Carlo analysis.Comment: 31 pages, 27 figures; v2: typos correcte

    Outcome predictors of uncomplicated sepsis

    Get PDF
    BACKGROUND: The development of sepsis risk prediction models and treatment guidelines has largely been based on patients presenting in the emergency department (ED) with severe sepsis or septic shock. Therefore, in this study we investigated which patient characteristics might identify patients with an adverse outcome in a heterogeneous group of patients presenting with uncomplicated sepsis to the emergency department (ED). FINDINGS: We performed a retrospective cohort analysis of all ED patients presenting with uncomplicated sepsis in a large teaching hospital during a 3-month period. During this period, 70 patients fulfilled the criteria of uncomplicated sepsis. Eight died in the hospital. Non-survivors were characterized by a higher abbreviated Mortality in Emergency Department Sepsis (MEDS) score (7.2 ± 3.4 vs. 4.8 ± 2.9, p = 0.03) and a lower Hb (6.6 ± 1.2 vs. 7.7 ± 1.4, p = 0.03), and they used beta-blockers more often (75% vs. 19%, p < 0.01). CONCLUSIONS: Non-survivors of uncomplicated sepsis had on average a higher abbreviated MEDS score, a lower hemoglobin (Hb) and more often used β-blockers compared to survivors. Early identification of these factors might contribute to optimization of sepsis treatment for this patient category and thereby prevent disease progression to severe sepsis or septic shock

    Cultivation-Independent Analysis of the Bacterial Community Associated With the Calcareous Sponge Clathrina clathrus and Isolation of Poriferisphaera corsica Gen. Nov., Sp. Nov., Belonging to the Barely Studied Class Phycisphaerae in the Phylum Planctomycetes

    Get PDF
    Marine ecosystems serve as global carbon sinks and nutrient source or breeding ground for aquatic animals. Sponges are ancient parts of these important ecosystems and can be found in caves, the deep-sea, clear waters, or more turbid environments. Here, we studied the bacterial community composition of the calcareous sponge Clathrina clathrus sampled close to the island Corsica in the Mediterranean Sea with an emphasis on planctomycetes. We show that the phylum Planctomycetes accounts for 9% of the C. clathrus-associated bacterial community, a 5-fold enrichment compared to the surrounding seawater. Indeed, the use of C. clathrus as a yet untapped source of novel planctomycetal strains led to the isolation of strain KS4T. The strain represents a novel genus and species within the class Phycisphaerae in the phylum Planctomycetes and displays interesting cell biological features, such as formation of outer membrane vesicles and an unexpected mode of cell division

    Technical note: A view from space on global flux towers by MODIS and Landsat: The FluxnetEO dataset

    Get PDF
    Funding Information: Acknowledgements. We thank the team at the ICOS Carbon Portal for their support in publishing the FluxnetEO data sets, with great thanks in particular to Ute Karstens and Zois Zogopoulos. SW acknowledges funding from an ESA Living Planet Fellowship in the project Vad3e mecum. Alexey Vasilevich Panov acknowledges funding from the Max Planck Society (Germany), Russian Foundation for Basic Re- search, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, project no. 20-45-242908. Frederik Schrader and Christian Brümmer acknowledge funds from the German Federal Ministry of Food and Agriculture (BMEL) received through Thünen Institute of Climate-Smart Agriculture. Simon Besnard acknowledges funding from the European Union through the BIOMAS-CAT (project code: 4000115192/18/I/NB) (https://eo4society.esa. int/projects/biomascat/, last access: 3 May 2022) and VERIFY (project code: BO-55-101-006) (https://cordis.europa.eu/project/id/ 776810, last access: 3 May 2022) projects. Funding Information: Financial support. This research has been supported by the Euro- Publisher Copyright: © 2022 Sophia Walther et al.The eddy-covariance technique measures carbon, water, and energy fluxes between the land surface and the atmosphere at hundreds of sites globally. Collections of standardised and homogenised flux estimates such as the LaThuile, Fluxnet2015, National Ecological Observatory Network (NEON), Integrated Carbon Observation System (ICOS), AsiaFlux, AmeriFlux, and Terrestrial Ecosystem Research Network (TERN)/OzFlux data sets are invaluable to study land surface processes and vegetation functioning at the ecosystem scale. Space-borne measurements give complementary information on the state of the land surface in the surroundings of the towers. They aid the interpretation of the fluxes and support the benchmarking of terrestrial biosphere models. However, insufficient quality and frequent and/or long gaps are recurrent problems in applying the remotely sensed data and may considerably affect the scientific conclusions. Here, we describe a standardised procedure to extract, quality filter, and gap-fill Earth observation data from the MODIS instruments and the Landsat satellites. The methods consistently process surface reflectance in individual spectral bands, derived vegetation indices, and land surface temperature. A geometrical correction estimates the magnitude of land surface temperature as if seen from nadir or 40g off-nadir. Finally, we offer the community living data sets of pre-processed Earth observation data, where version 1.0 features the MCD43A4/A2 and MxD11A1 MODIS products and Landsat Collection 1 Tier 1 and Tier 2 products in a radius of 2 km around 338 flux sites. The data sets we provide can widely facilitate the integration of activities in the eddy-covariance, remote sensing, and modelling fields.publishersversionpublishe
    corecore