32 research outputs found
Counting electrons transferred through a thin alumina film into Au chains
Low-temperature STM measurements combined with density functional theory calculations are employed to study the adsorption of gold on alumina/NiAl(110). The binding of Au monomers involves breaking of an oxide Al-O bond below the adatom and stabilizing the hence undercoordinated O ion by forming a new bond to an Al atom in the NiAl. The adsorption implies negative charging of the adatom. The linear arrangement of favorable binding sites induces the self-organization of Au atoms into chains. For every ad-chain, the number of transfer electrons from the support is determined by analyzing the node structure of the corresponding highest occupied molecular orbital
Synthesis, Structure and Electronic Properties of Graphitic Carbon Nitride Films
Dark-colored shiny flakes of graphitic carbon nitride materials produced by reacting dicyandiamide C2N4H4 in a KBr/LiBr molten salt medium were determined to have a C/N ratio near 1.2:1. The compounds also contained 2.3-2.5 wt % H incorporated within N-H species identified by Fourier transform infrared spectroscopy. One recent study revealed analogous results for thin films produced by an similar synthesis method, while a previous investigation instead reported formation of crystalline gC3N4 flakes with a triazine-based graphitic carbon nitride (TGCN) structure. The structures of the materials produced here were studied using a combination of high resolution transmission electron microscopy, X-ray diffraction, IR and Raman and X-ray photoelectron spectroscopy, along with series of density functional theory (DFT) calculations carried out for a range of model layered structures. The results indicate the graphitic layered gCxNy materials contain a mixture of sp2-hybridized C-N and C-C bonded structures, with TGCN to graphene-like domains existing within the layers. Paramagnetic centers localized on the C3N3 rings revealed by electron paramagnetic resonance spectroscopy correspond to potential defect structures within the graphitic layers predicted by DFT calculations. Our results combined with those of previous researchers indicate that a range of graphitic carbon nitride materials could exist with different C/N/H ratios leading to tunable electronic properties for catalysis, semiconducting, spintronics and energy applications, that could be targeted by controlling the synthesis and thin film deposition procedures
O(N) methods in electronic structure calculations
Linear scaling methods, or O(N) methods, have computational and memory
requirements which scale linearly with the number of atoms in the system, N, in
contrast to standard approaches which scale with the cube of the number of
atoms. These methods, which rely on the short-ranged nature of electronic
structure, will allow accurate, ab initio simulations of systems of
unprecedented size. The theory behind the locality of electronic structure is
described and related to physical properties of systems to be modelled, along
with a survey of recent developments in real-space methods which are important
for efficient use of high performance computers. The linear scaling methods
proposed to date can be divided into seven different areas, and the
applicability, efficiency and advantages of the methods proposed in these areas
is then discussed. The applications of linear scaling methods, as well as the
implementations available as computer programs, are considered. Finally, the
prospects for and the challenges facing linear scaling methods are discussed.Comment: 85 pages, 15 figures, 488 references. Resubmitted to Rep. Prog. Phys
(small changes
Modulation of gene expression in U251 glioblastoma cells by binding of mutant p53 R273H to intronic and intergenic sequences
Missense point mutations in the TP53 gene are frequent genetic alterations in human tumor tissue and cell lines derived thereof. Mutant p53 (mutp53) proteins have lost sequence-specific DNA binding, but have retained the ability to interact in a structure-selective manner with non-B DNA and to act as regulators of transcription. To identify functional binding sites of mutp53, we established a small library of genomic sequences bound by p53R273H in U251 human glioblastoma cells using chromatin immunoprecipitation (ChIP). Mutp53 binding to isolated DNA fragments confirmed the specificity of the ChIP. The mutp53 bound DNA sequences are rich in repetitive DNA elements, which are dispersed over non-coding DNA regions. Stable down-regulation of mutp53 expression strongly suggested that mutp53 binding to genomic DNA is functional. We identified the PPARGC1A and FRMD5 genes as p53R273H targets regulated by binding to intronic and intra-genic sequences. We propose a model that attributes the oncogenic functions of mutp53 to its ability to interact with intronic and intergenic non-B DNA sequences and modulate gene transcription via re-organization of chromatin