182 research outputs found

    Intraoperative blood pressure changes as a risk factor for anastomotic leakage in colorectal surgery

    Get PDF
    Anastomotic leakage is a serious complication after colorectal surgery. Pre- and intraoperative factors may contribute to failure of colorectal anastomosis. In this study we have tried to determine risk factors for anastomotic leakage, with special emphasis on intraoperative blood pressure changes. During a 24-month period, patients receiving a colorectal anastomosis were prospectively evaluated. For each patient preoperative characteristics, intraoperative adverse events and surgical outcome data were collected. Blood pressure changes were calculated as a relative decrease (> 25% and > 40%) from preoperative baseline values. During the study period, 285 patients underwent colorectal surgery with an anastomosis. Fifteen patients developed an anastomotic leakage (5.3%). All patients who developed a leakage had a left-sided procedure (P 40% decrease in diastolic blood pressure (P = 0.049)] were identified as univariate risk factors for anastomotic leakage. The development of an anastomotic leakage after colorectal surgery is related to surgical, patient and anaesthetic risk factors. A high preoperative diastolic blood pressure and profound intraoperative hypotension combined with complex surgery, marked by a blood loss of a parts per thousand yen250 mL and the occurrence of intraoperative adverse events, is associated with an increased risk of developing anastomotic leakag

    Transcriptional Profiling of Bacillus anthracis Sterne (34F2) during Iron Starvation

    Get PDF
    Lack of available iron is one of many environmental challenges that a bacterium encounters during infection and adaptation to iron starvation is important for the pathogen to efficiently replicate within the host. Here we define the transcriptional response of B. anthracis Sterne (34F2) to iron depleted conditions. Genome-wide transcript analysis showed that B. anthracis undergoes considerable changes in gene expression during growth in iron-depleted media, including the regulation of known and candidate virulence factors. Two genes encoding putative internalin proteins were chosen for further study. Deletion of either gene (GBAA0552 or GBAA1340) resulted in attenuation in a murine model of infection. This attenuation was amplified in a double mutant strain. These data define the transcriptional changes induced during growth in low iron conditions and illustrate the potential of this dataset in the identification of putative virulence determinants for future study

    Characteristics and properties of nano-LiCoO2 synthesized by pre-organized single source precursors: Li-ion diffusivity, electrochemistry and biological assessment

    Get PDF
    Background: LiCoO2 is one of the most used cathode materials in Li-ion batteries. Its conventional synthesis requires high temperature (>800 degrees C) and long heating time (>24 h) to obtain the micronscale rhombohedral layered high-temperature phase of LiCoO2 ( HT-LCO). Nanoscale HT-LCO is of interest to improve the battery performance as the lithium (Li+) ion pathway is expected to be shorter in nanoparticles as compared to micron sized ones. Since batteries typically get recycled, the exposure to nanoparticles during this process needs to be evaluated. Results: Several new single source precursors containing lithium (Li+) and cobalt (Co2+) ions, based on alkoxides and aryloxides have been structurally characterized and were thermally transformed into nanoscale HT-LCO at 450 degrees C within few hours. The size of the nanoparticles depends on the precursor, determining the electrochemical performance. The Li-ion diffusion coefficients of our - LiCoO2 nanoparticles improved at least by a factor of 10 compared to commercial one, while showing good reversibility upon charging and discharging. The hazard of occupational exposure to nanoparticles during battery recycling was investigated with an in vitro multicellular lung model. Conclusions: Our heterobimetallic single source precursors allow to dramatically reduce the production temperature and time for HT-LCO. The obtained nanoparticles of LiCoO2 have faster kinetics for Li+ insertion/extraction compared to microparticles. Overall, nano-sized - LiCoO2 particles indicate a lower cytotoxic and (pro-)inflammogenic potential in vitro compared to their micron-sized counterparts. However, nanoparticles aggregate in air and behave partially like microparticles

    Centrosome misorientation reduces stem cell division during ageing

    Full text link
    Asymmetric division of adult stem cells generates one self- renewing stem cell and one differentiating cell, thereby maintaining tissue homeostasis. A decline in stem cell function has been proposed to contribute to tissue ageing, although the underlying mechanism is poorly understood. Here we show that changes in the stem cell orientation with respect to the niche during ageing contribute to the decline in spermatogenesis in the male germ line of Drosophila. Throughout the cell cycle, centrosomes in germline stem cells ( GSCs) are oriented within their niche and this ensures asymmetric division. We found that GSCs containing misoriented centrosomes accumulate with age and that these GSCs are arrested or delayed in the cell cycle. The cell cycle arrest is transient, and GSCs appear to re- enter the cell cycle on correction of centrosome orientation. On the basis of these findings, we propose that cell cycle arrest associated with centrosome misorientation functions as a mechanism to ensure asymmetric stem cell division, and that the inability of stem cells to maintain correct orientation during ageing contributes to the decline in spermatogenesis. We also show that some of the misoriented GSCs probably originate from dedifferentiation of spermatogonia.University of Michigan ; March of Dimes Basil O'Conner Starter Scholar Research Award ; Searle Scholar Program ; NIH [P01 DK53074, R01GM072006]We thank C. Gonzalez, D. McKearin, N. Rusan, M. Peifer and the Bloomington Stock Center for fly stocks; R. Lehmann, C. Field and the Developmental Studies Hybridoma Bank for antibodies; M. Kiel and D. Nakada for help with X-ray irradiation; and S. Morrison and T. Mahowald for comments on the manuscript. This research was supported by a University of Michigan start-up fund, March of Dimes Basil O'Conner Starter Scholar Research Award and the Searle Scholar Program (to Y.M.Y.), and NIH grants P01 DK53074 (to M.T.F.) and R01GM072006 (to A.J.H.).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62879/1/nature07386.pd

    Biomechanical testing of fixed and adjustable femoral cortical suspension devices for ACL reconstruction under high loads and extended cyclic loading

    Get PDF
    Purpose: To compare loop elongation after 5000 cycles, loop-elongation at failure, and load at failure of the fixed-loop G-Lok device and three adjustable-loop devices (UltraButton, RigidLoop Adjustable and ProCinch RT), during testing over extended cycles under high loading. Methods: Five devices of each type were tested on a custom-built rig fixed to an Instron machine. The testing protocol had four stages: preloading, cyclic preconditioning, incremental cyclic loading and pull-to-failure. Outcome measures were loop elongation after 5000 cycles, loop-elongation at failure, and load at failure. Results: The loop elongation after 5000 cycles for G-Lok was 1.46 ± 0.25 mm, which was comparable to that of RigidLoop (1.51 ± 0.16 mm, p = 1.000) and ProCinch (1.60 ± 0.09 mm, p = 1.000). In comparison, the loop elongation for UltraButton was 2.66 ± 0.28 mm, which was significantly larger than all other devices (p = 0.048). The failure load for all devices ranged between 1455 and 2178 N. G-Lok was significantly stronger than all adjustable-loop devices (p = 0.048). The elongation at failure was largest for UltraButton (4.20 ± 0.33 mm), which was significantly greater than G-Lok (3.17 ± 0.33 mm, p = 0.048), RigidLoop (2.88 ± 0.20 mm, p = 0.048) and ProCinch (2.78 ± 0.08 mm, p = 0.048). There was no significant difference in elongation at failure for the rest of the devices. Conclusions: Our study has shown that the G-Lok fixed-loop device and the three adjustable-loop devices (UltraButton, RigidLoop Adjustable and ProCinch RT) all elongated less than 3 mm during testing over an extended number of cycles at high loads, nonetheless, the fixed loop device performed best in terms of least elongation and highest load at failure.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.published version, accepted versio
    • …
    corecore