860 research outputs found

    Central vein catheter-related thrombosis in intensive care patients: incidence, risks factors, and relationship with catheter-related sepsis.

    Full text link
    peer reviewed[en] OBJECTIVE: To evaluate the incidence and risk factors for catheter-related central vein thrombosis in ICU patients. DESIGN: Observational prospective multicenter study. SETTING: An 8-bed surgical ICU, a 10-bed surgical cardiovascular ICU, and a 10-bed medical-surgical ICU. PATIENTS: During an 18-month period, 265 internaljugular or subclavian catheters were included. Veins were explored by duplex scanning performed just before or < 24 h after catheter removal. Suspected risk factors of catheter-related central vein thrombosis were recorded. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Fifty-seven catheters were excluded from the analysis. Therefore 208 catheters were analyzed. Mean age of patients was 64+/-15 years, simplified acute physiologic score was 12+/-5, organ system failure score at insertion was 1+/-1, and mean duration of catheterization was 9+/-5 days. A catheter-related internal jugular or subclavian vein thrombosis occurred in 33% of the cases (42% [95% confidence interval (CI), 34 to 49%] and 10% [95% CI, 3 to 18%], respectively). Thrombosis was limited in 8%, large in 22%, and occlusive in 3% of the cases. Internal jugular route (relative risk [RR], 4.13; 95% CI, 1.72 to 9.95), therapeutic heparinization (RR 0.47; 95% CI, 0.23 to 0.99), and age >64 years (RR, 2.44; 95% CI, 2.05 to 3.19) were independently associated with catheter-related thrombosis. Moreover, the risk of catheter-related sepsis was 2.62-fold higher when thrombosis occurred (p=0.011). CONCLUSIONS: Catheter-related central vein thrombosis is a frequent complication of central venous catheterization in ICU patients and is closely associated with catheter-related sepsis

    Functionalized superhydrophobic coatings with micro-/nanostructured ZnO particles in a sol–gel matrix

    Get PDF
    Among the methods to create superhydrophobic surfaces by wet chemistry, one of the strategies consists in coating the substrate with a hydrophobic polymer with specific morphology. Such elaborated surfaces are largely developed and can present complex architectures but are generally fragile. Ceramic-based coatings show better durability. In this work, a new route associating inorganic and polymeric parts is used. Surfaces with superhydrophobic properties are prepared with a mixture of zinc oxide (ZnO) particles in a hybrid organic inorganic matrix prepared via sol–gel route. ZnO particles were synthesized by the inorganic polycondensation route and exhibit an appropriate micro-/nanostructure for superhydrophobicity. Sol–gel matrix is obtained by the alkoxide route with aluminum-tri-secbutoxide (ASB) and (3-glycidoxypropyl)trimethoxysilane (GPTMS). A step of octadecylphosphonic acid (ODP) functionalization on ZnO particles and on film surfaces was employed to considerably improve hydrophobic properties. This new route enables to obtain superhydrophobic coatings that exhibitwater contact angles superior to 150°. These coatings show a homogeneous and smooth coverage on aluminum alloy substrate. Results attest the significance of the synergy for superhydrophobic coatings: a micro-/nanostructured surface and an intrinsic hydrophobic property of the material. The durability of the coatings has also been demonstrated with only a slight decrease in hydrophobicity after erosion

    CoCAS: a ChIP-on-chip analysis suite

    Get PDF
    Motivation: High-density tiling microarrays are increasingly used in combination with ChIP assays to study transcriptional regulation. To ease the analysis of the large amounts of data generated by this approach, we have developed ChIP-on-chip Analysis Suite (CoCAS), a standalone software suite which implements optimized ChIP-on-chip data normalization, improved peak detection, as well as quality control reports. Our software allows dye swap, replicate correlation and connects easily with genome browsers and other peak detection algorithms. CoCAS can readily be used on the latest generation of Agilent high-density arrays. Also, the implemented peak detection methods are suitable for other datasets, including ChIP-Seq output

    4DHumanOutfit: a multi-subject 4D dataset of human motion sequences in varying outfits exhibiting large displacements

    Full text link
    This work presents 4DHumanOutfit, a new dataset of densely sampled spatio-temporal 4D human motion data of different actors, outfits and motions. The dataset is designed to contain different actors wearing different outfits while performing different motions in each outfit. In this way, the dataset can be seen as a cube of data containing 4D motion sequences along 3 axes with identity, outfit and motion. This rich dataset has numerous potential applications for the processing and creation of digital humans, e.g. augmented reality, avatar creation and virtual try on. 4DHumanOutfit is released for research purposes at https://kinovis.inria.fr/4dhumanoutfit/. In addition to image data and 4D reconstructions, the dataset includes reference solutions for each axis. We present independent baselines along each axis that demonstrate the value of these reference solutions for evaluation tasks

    Photoelectrochemical water oxidation of GaP 1−x Sb x with a direct band gap of 1.65 eV for full spectrum solar energy harvesting

    Get PDF
    International audienceHydrogen produced using artificial photosynthesis, i.e. solar splitting of water, is a promising energy alternative to fossil fuels. Efficient solar water splitting demands a suitable band gap to absorb near full spectrum solar energy and a photoelectrode that is stable in strongly alkaline or acidic electrolytes. In this work, we demonstrate for the first time, a perfectly relaxed GaP0.67Sb0.33 monocrystalline alloy grown on a silicon substrate with a direct band gap of 1.65 eV by molecular beam epitaxy (MBE) without any evidence of chemical disorder. Under one Sun illumination, the GaP0.67Sb0.33 photoanode with a 20 nm TiO2 protective layer and 8 nm Ni co-catalyst layer shows a photocurrent density of 4.82 mA cm−2 at 1.23 V and an onset potential of 0.35 V versus the reversible hydrogen electrode (RHE) in 1.0 M KOH (pH = 14) aqueous solution. The photoanode yields an incident-photon-to-current efficiency (IPCE) of 67.1% over the visible range between wavelengths 400 nm to 650 nm. Moreover, the GaP0.67Sb0.33 photoanode was stable over 5 h without degradation of the photocurrent under strong alkaline conditions under continuous illumination at 1 V versus RHE. Importantly, the direct integration of the 1.65 eV GaP0.67 Sb0.33 on 1.1 eV silicon may pave the way for an ideal tandem photoelectrochemical system with a theoretical solar to hydrogen efficiency of 27%

    Progress toward developing the TMT adaptive optical systems and their components

    Get PDF
    Atmospheric turbulence compensation via adaptive optics (AO) will be essential for achieving most objectives of the TMT science case. The performance requirements for the initial implementation of the observatory's facility AO system include diffraction-limited performance in the near IR with 50 per cent sky coverage at the galactic pole. This capability will be achieved via an order 60x60 multi-conjugate AO system (NFIRAOS) with two deformable mirrors optically conjugate to ranges of 0 and 12 km, six high-order wavefront sensors observing laser guide stars in the mesospheric sodium layer, and up to three low-order, IR, natural guide star wavefront sensors located within each client instrument. The associated laser guide star facility (LGSF) will consist of 3 50W class, solid state, sum frequency lasers, conventional beam transport optics, and a launch telescope located behind the TMT secondary mirror. In this paper, we report on the progress made in designing, modeling, and validating these systems and their components over the last two years. This includes work on the overall layout and detailed opto-mechanical designs of NFIRAOS and the LGSF; reliable wavefront sensing methods for use with elongated and time-varying sodium laser guide stars; developing and validating a robust tip/tilt control architecture and its components; computationally efficient algorithms for very high order wavefront control; detailed AO system modeling and performance optimization incorporating all of these effects; and a range of supporting lab/field tests and component prototyping activities at TMT partners. Further details may be found in the additional papers on each of the above topics

    Laser monitoring system for the CMS lead tungstate crystal calorimeter

    Get PDF
    We report on the multiple wavelength laser monitoring system designed for the CMS lead tungstate crystal calorimeter read-out with avalanche photodiodes (Barrel calorimeters) and vacuum phototriodes (End Cap calorimeters). Results are presented for the test beam performance of the system designed to achieve 0.5% relative inter-calibration of the optical transmittance for lead tungstate scintillation emission over nearly 80 000 channels. The system operates in continuous measurement cycles to follow each crystal?s evolution under irradiation and recovery periods foreseen during operation at the LHC

    Tempo and drivers of plant diversification in the European mountain system

    Get PDF
    There is still limited consensus on the evolutionary history of species-rich temperate alpine floras due to a lack of comparable and high-quality phylogenetic data covering multiple plant lineages. Here we reconstructed when and how European alpine plant lineages diversified, i.e., the tempo and drivers of speciation events. We performed full-plastome phylogenomics and used multi-clade comparative models applied to six representative angiosperm lineages that have diversified in European mountains (212 sampled species, 251 ingroup species total). Diversification rates remained surprisingly steady for most clades, even during the Pleistocene, with speciation events being mostly driven by geographic divergence and bedrock shifts. Interestingly, we inferred asymmetrical historical migration rates from siliceous to calcareous bedrocks, and from higher to lower elevations, likely due to repeated shrinkage and expansion of high elevation habitats during the Pleistocene. This may have buffered climate-related extinctions, but prevented speciation along elevation gradients as often documented for tropical alpine floras
    corecore