179 research outputs found

    Design of a communications interface for a very high performance computer

    Get PDF
    PetaFLOPS computing power is the newest goal of Federal Government agencies, in the increasingly active supercomputer field. To obtain this performance goal by the year 2007, sophisticated parallel processing designs are required. To effectively create network interfaces/routers for interprocessor communications in such computer systems, it requires optimal hardware and software codesigns. An interface is presented for the NJIT New Millennium Computing Point Design, a system that targets 100 TeraFLOPS performance by the year 2005. The router handles store-and-forward switching and wormhole routing for the system

    Unachievable Region in Precision-Recall Space and Its Effect on Empirical Evaluation

    Get PDF
    Precision-recall (PR) curves and the areas under them are widely used to summarize machine learning results, especially for data sets exhibiting class skew. They are often used analogously to ROC curves and the area under ROC curves. It is known that PR curves vary as class skew changes. What was not recognized before this paper is that there is a region of PR space that is completely unachievable, and the size of this region depends only on the skew. This paper precisely characterizes the size of that region and discusses its implications for empirical evaluation methodology in machine learning.Comment: ICML2012, fixed citations to use correct tech report numbe

    Voluntary Employee Turnover: Retaining High-Performing Healthcare Employees

    Get PDF
    Voluntary employee turnover in the healthcare industry is one of the most expensive and disruptive business problems that healthcare organizations encounter. Healthcare organizations can expect employee replacement costs to represent up to 150% of a departing employee\u27s annual salary in new employee acquisition and decreased productivity. Guided by the leader-member exchange theory, the purpose of this single case study was to explore the strategies healthcare managers used to retain high-performing healthcare employees. Using semistructured interviews, the targeted population encompassed 6 healthcare managers from a healthcare organization in Central Texas who have demonstrated successful strategies for retaining high-performing healthcare employees by maintaining a 90% retention rate for a 12-month period. Organizational documents were reviewed, including reports of managers\u27 retention rates and number of employees per manager, for a 12-month period. Data were coded, analyzed into themes via Yin\u27s 5-step method, triangulated, and then subjected to member checking to bolster the trustworthiness of interpretations. Two major themes were revealed: employee engagement and leadership style. Participants noted that their employees were their priority and practiced participatory leadership to gain trust, loyalty, and commitment. The findings may promote positive social change by providing healthcare managers with information on successful strategies for retaining high-performing healthcare employees, which could reduce unemployment rates, stabilize families, and improve employees\u27 work-life balance outside their organizations

    Hydrodynamic Modeling of Krypton and Xenon Propellant Performance in a Hall Thruster

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76147/1/AIAA-2007-5210-907.pd

    Counselor Education Faculty Positions: Requirements and Preferences in CESNET Announcements 2005-2009

    Get PDF
    Counselor Education faculty positions announced on CESNET from 2005 through 2009 (N = 424) were analyzed to ascertain current trends in required and preferred qualifications. Typical qualifications mentioned in announcements include education and experience in clinical settings, teaching, and research. After a doctoral degree, the most common qualification included was experience in clinical settings, indicated by either years of experience or licensure eligibility. Half of the openings did not specify one specialty; school counseling was mentioned most often. Teaching and research requirements frequently referred to potential and commitment . Implications for faculty advisors and graduate students are included

    Photo-induced second-order nonlinearity in stoichiometric silicon nitride waveguides

    Get PDF
    We report the observation of second-harmonic generation in stoichiometric silicon nitride waveguides grown via low-pressure chemical vapour deposition. Quasi-rectangular waveguides with a large cross section were used, with a height of 1 {\mu}m and various different widths, from 0.6 to 1.2 {\mu}m, and with various lengths from 22 to 74 mm. Using a mode-locked laser delivering 6-ps pulses at 1064 nm wavelength with a repetition rate of 20 MHz, 15% of the incoming power was coupled through the waveguide, making maximum average powers of up to 15 mW available in the waveguide. Second-harmonic output was observed with a delay of minutes to several hours after the initial turn-on of pump radiation, showing a fast growth rate between 10−4^{-4} to 10−2^{-2} s−1^{-1}, with the shortest delay and highest growth rate at the highest input power. After this first, initial build-up, the second-harmonic became generated instantly with each new turn-on of the pump laser power. Phase matching was found to be present independent of the used waveguide width, although the latter changes the fundamental and second-harmonic phase velocities. We address the presence of a second-order nonlinearity and phase matching, involving an initial, power-dependent build-up, to the coherent photogalvanic effect. The effect, via the third-order nonlinearity and multiphoton absorption leads to a spatially patterned charge separation, which generates a spatially periodic, semi-permanent, DC-field-induced second-order susceptibility with a period that is appropriate for quasi-phase matching. The maximum measured second-harmonic conversion efficiency amounts to 0.4% in a waveguide with 0.9 x 1 {\mu}m2^2 cross section and 36 mm length, corresponding to 53 {\mu}W at 532 nm with 13 mW of IR input coupled into the waveguide. The according χ(2)\chi^{(2)} amounts to 3.7 pm/V, as retrieved from the measured conversion efficiency.Comment: 20 pages, 10 figure

    An International Quiet Ocean Experiment

    Get PDF
    Author Posting. © Oceanography Society, 2011. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 24, no. 2 (2011): 174–181, doi:10.5670/oceanog.2011.37.The effect of noise on marine life is one of the big unknowns of current marine science. Considerable evidence exists that the human contribution to ocean noise has increased during the past few decades: human noise has become the dominant component of marine noise in some regions, and noise is directly correlated with the increasing industrialization of the ocean. Sound is an important factor in the lives of many marine organisms, and theory and increasing observations suggest that human noise could be approaching levels at which negative effects on marine life may be occurring. Certain species already show symptoms of the effects of sound. Although some of these effects are acute and rare, chronic sublethal effects may be more prevalent, but are difficult to measure. We need to identify the thresholds of such effects for different species and be in a position to predict how increasing anthropogenic sound will add to the effects. To achieve such predictive capabilities, the Scientific Committee on Oceanic Research (SCOR) and the Partnership for Observation of the Global Oceans (POGO) are developing an International Quiet Ocean Experiment (IQOE), with the objective of coordinating the international research community to both quantify the ocean soundscape and examine the functional relationship between sound and the viability of key marine organisms. SCOR and POGO will convene an open science meeting to gather community input on the important research, observations, and modeling activities that should be included in IQOE

    Global Regulation of Nucleotide Biosynthetic Genes by c-Myc

    Get PDF
    The c-Myc transcription factor is a master regulator and integrates cell proliferation, cell growth and metabolism through activating thousands of target genes. Our identification of direct c-Myc target genes by chromatin immunoprecipitation (ChIP) coupled with pair-end ditag sequencing analysis (ChIP-PET) revealed that nucleotide metabolic genes are enriched among c-Myc targets, but the role of Myc in regulating nucleotide metabolic genes has not been comprehensively delineated.Here, we report that the majority of genes in human purine and pyrimidine biosynthesis pathway were induced and directly bound by c-Myc in the P493-6 human Burkitt's lymphoma model cell line. The majority of these genes were also responsive to the ligand-activated Myc-estrogen receptor fusion protein, Myc-ER, in a Myc null rat fibroblast cell line, HO.15 MYC-ER. Furthermore, these targets are also responsive to Myc activation in transgenic mouse livers in vivo. To determine the functional significance of c-Myc regulation of nucleotide metabolism, we sought to determine the effect of loss of function of direct Myc targets inosine monophosphate dehydrogenases (IMPDH1 and IMPDH2) on c-Myc-induced cell growth and proliferation. In this regard, we used a specific IMPDH inhibitor mycophenolic acid (MPA) and found that MPA dramatically inhibits c-Myc-induced P493-6 cell proliferation through S-phase arrest and apoptosis.Taken together, these results demonstrate the direct induction of nucleotide metabolic genes by c-Myc in multiple systems. Our finding of an S-phase arrest in cells with diminished IMPDH activity suggests that nucleotide pool balance is essential for c-Myc's orchestration of DNA replication, such that uncoupling of these two processes create DNA replication stress and apoptosis
    • …
    corecore