7,355 research outputs found

    Creepy (not KREEPy) Gold-Indium Intermetallic Compounds on Secondary Ion Mass Spectrometry Samples

    Get PDF
    A series of Secondary Ion Mass Spectrometry (SIMS) sessions to measure hydrogen (H) in Martian meteorite minerals was completed using the Cameca 6f SIMS and NanoSIMS 50L at Arizona State University (ASU). During these sessions, a creeping phenomenon has occurred, where the edges of samples pressed in indium are covered by a metal alloy. We summarize these observations herein, present a collection of preliminary data, and discuss explanations and concerns for future SIMS work. We conclude the report with a research plan for further study

    The application of S isotopes and S/Se ratios in determining ore-forming processes of magmatic Niā€“Cuā€“PGE sulfide deposits: a cautionary case study from the northern Bushveld Complex

    Get PDF
    The application of S/Se ratios and S isotopes in the study of magmatic Niā€“Cuā€“PGE sulfide deposits has long been used to trace the source of S and to constrain the role of crustal contamination in triggering sulfide saturation. However, both S/Se ratios and S isotopes are subject to syn- and post-magmatic processes that may alter their initial signatures. We present in situ mineral Ī“34S signatures and S/Se ratios combined with bulk S/Se ratios to investigate and assess their utility in constraining ore-forming processes and the source of S within magmatic sulfide deposits. Magmatic Niā€“Cuā€“PGE sulfide mineralization in the Grasvally Noriteā€“Pyroxeniteā€“Anorthosite (GNPA) member, northern Bushveld Complex was used as a case study based on well-defined constraints of sulfide paragenesis and local S isotope signatures. A crustal Ī“34S component is evident in the most primary sulfide assemblage regardless of footwall lithology, and is inferred that the parental magma(s) of the GNPA member was crustally contaminated and sulfide saturated at the time of emplacement. However, S/Se ratios of both the primary and in particular secondary sulfide assemblages record values within or below the mantle range, rather than high crustal S/Se ratios. In addition, there is a wide range of S/Se ratio for each sulfide mineral within individual assemblages that is not necessarily consistent with the bulk ratio. The initial crustal S/Se ratio is interpreted to have been significantly modified by syn-magmatic lowering of S/Se ratio by sulfide dissolution, and post-magmatic lowering of the S/Se ratio from hydrothermal S-loss, which also increases the PGE tenor of the sulfides. Trace element signatures and variations in Th/Yb and Nb/Th ratios support both an early pre-emplacement contamination event as seen by the S isotopes and S/Se ratios, but also a second contamination event resulting from the interaction of the GNPA magma with the local footwall country rocks at the time of emplacement; though this did not add any additional S. We are able to present an integrated emplacement and contamination model for the northern limb of the Bushveld Complex. Although the multitude of processes that affect variations in the Ī“34S signature and in particular S/Se ratio may be problematic in interpreting ore genesis, they can reveal a wealth of additional detail on a number of processes involved in the genetic history of a Niā€“Cuā€“PGE deposit in addition to crustal contamination. However, a prerequisite for being able to do this is to utilize other independent petrological and mineralogical techniques that provide constraints on both the timing and effect of various ore-forming and modifying processes. Utilizing both bulk and in situ methods in concert to determine the S/Se ratio allows for the assessment of multiple sulfide populations, the partitioning behaviour of Se during sulfide liquid fractionation and also the effects of low temperature fluid alteration. In comparison, S isotopes are relatively more robust and represent a more reliable indicator of the role of crustal S contamination. The addition of trace element data to the above makes for an incredibly powerful approach in assessing the role of crustal contamination in magmatic sulfide systems

    Neoproterozoic copper cycling, and the rise of metazoans

    Get PDF
    Acknowledgements We thank J. Johnston for skilled technical support. NERC provides funding for the Isotope Community Support Facility. C. Scott and an anonymous reviewer provided invaluable criticism on the manuscript. This work was supported by the NERC under Grant NE/M010953/1.Peer reviewedPublisher PD

    Money and happiness : rank of income, not income, affects life satisfaction

    Get PDF
    Does money buy happiness, or does happiness come indirectly from the higher rank in society that money brings? Here we test a rank hypothesis, according to which people gain utility from the ranked position of their income within a comparison group. The rank hypothesis contrasts with traditional reference income hypotheses, which suggest utility from income depends on comparison to a social group reference norm. We find that the ranked position of an individualā€™s income predicts general life satisfaction, while absolute income and reference income have no effect. Furthermore, individuals weight upward comparisons more than downward comparisons. According to the rank hypothesis, income and utility are not directly linked: Increasing an individualā€™s income will only increase their utility if ranked position also increases and will necessarily reduce the utility of others who will lose rank

    Tracing organic matter composition and distribution and its role on arsenic release in shallow Cambodian groundwaters

    Get PDF
    Biogeochemical processes that utilize dissolved organic carbon are widely thought to be responsible for the liberation of arsenic from sediments to shallow groundwater in south and southeast Asia. The accumulation of this known carcinogen to hazardously high concentrations has occurred in the primary source of drinking water in large parts of densely populated countries in this region. Both surface and sedimentary sources of organic matter have been suggested to contribute dissolved organic carbon in these aquifers. However, identification of the source of organic carbon responsible for driving arsenic release remains enigmatic and even controversial. Here, we provide the most extensive interrogation to date of the isotopic signature of ground and surface waters at a known arsenic hotspot in Cambodia. We present tritium and radiocarbon data that demonstrates that recharge through ponds and/or clay windows can transport young, surface derived organic matter in to groundwater to depths of 44 m under natural flow conditions. Young organic matter dominates the dissolved organic carbon pool in groundwater that is in close proximity to these surface water sources and we suggest this is likely a regional relationship. In locations distal to surface water contact, dissolved organic carbon represents a mixture of both young surface and older sedimentary derived organic matter. Ground-surface water interaction therefore strongly influences the average dissolved organic carbon age and how this is distributed spatially across the field site. Arsenic mobilization rates appear to be controlled by the age of dissolved organic matter present in these groundwaters. Arsenic concentrations in shallow groundwaters (< 20 m) increase by 1 Ī¼g/l for every year increase in dissolved organic carbon age compared to only 0.25 Ī¼g/l for every year increase in dissolved organic carbon age in deeper (> 20 m) groundwaters. We suggest that, while the rate of arsenic release is greatest in shallow aquifer sediments, arsenic release also occurs in deeper aquifer sediments and as such remains an important process in controlling the spatial distribution of arsenic in the groundwaters of SE Asia. Our findings suggest that any anthropogenic activities that alter the source of groundwater recharge or the timescales over which recharge takes place may also drive changes in the natural composition of dissolved organic carbon in these groundwaters. Such changes have the potential to influence both the spatial and temporal evolution of the current groundwater arsenic hazard in this region

    J0316+4328: a Probable "Asymmetric Double" Lens

    Full text link
    We report a probable gravitational lens J0316+4328, one of 19 candidate asymmetric double lenses (2 images at a high flux density ratio) from CLASS. Observations with the Very Large Array (VLA), MERLIN and the Very Long Baseline Array (VLBA) imply that J0316+4328 is a lens with high confidence. It has 2 images separated by 0.40", with 6 GHz flux densities of 62 mJy and 3.2 mJy. The flux density ratio of ~19 (constant over the frequency range 6-22 GHz) is the largest for any 2 image gravitational lens. High resolution optical imaging and deeper VLBI maps should confirm the lensing interpretation and provide inputs to detailed lens models. The unique configuration will give strong constraints on the lens galaxy's mass profile.Comment: Accepted to MNRAS Letters. 5 pages, 6 figures, 3 table

    A fully resolved active musculo-mechanical model for esophageal transport

    Full text link
    Esophageal transport is a physiological process that mechanically transports an ingested food bolus from the pharynx to the stomach via the esophagus, a multi-layered muscular tube. This process involves interactions between the bolus, the esophagus, and the neurally coordinated activation of the esophageal muscles. In this work, we use an immersed boundary (IB) approach to simulate peristaltic transport in the esophagus. The bolus is treated as a viscous fluid that is actively transported by the muscular esophagus, which is modeled as an actively contracting, fiber-reinforced tube. A simplified version of our model is verified by comparison to an analytic solution to the tube dilation problem. Three different complex models of the multi-layered esophagus, which differ in their activation patterns and the layouts of the mucosal layers, are then extensively tested. To our knowledge, these simulations are the first of their kind to incorporate the bolus, the multi-layered esophagus tube, and muscle activation into an integrated model. Consistent with experimental observations, our simulations capture the pressure peak generated by the muscle activation pulse that travels along the bolus tail. These fully resolved simulations provide new insights into roles of the mucosal layers during bolus transport. In addition, the information on pressure and the kinematics of the esophageal wall due to the coordination of muscle activation is provided, which may help relate clinical data from manometry and ultrasound images to the underlying esophageal motor function
    • ā€¦
    corecore